

- Energy and mass exchange at an urban site in mountainous
- **terrain the Alpine city of Innsbruck**
- 3 Helen Claire Ward¹, Mathias Walter Rotach¹, Alexander Gohm¹, Martin Graus¹, Thomas Karl¹,
- 4 Maren Haid¹, Lukas Umek¹, Thomas Muschinski¹
- 5 Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
- 6 Correspondence to: Helen C. Ward (helen.ward@uibk.ac.at)

7 Abstract

8 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

49

50

51

52

53

54

55

56

57

This study represents the first detailed analysis of multi-year near-surface turbulence observations for an urban area located in highly complex terrain. Using four years of eddy covariance measurements over the Alpine city of Innsbruck, Austria, the effects of the urban surface, orographic setting and mountain weather on energy and mass exchange are investigated. In terms of surface controls, findings for Innsbruck are in accordance with previous studies at city-centre sites. The available energy is partitioned mainly into net storage heat flux and sensible heat flux (each comprising about 40% of the net radiation, Q^* , during summer daytimes). The latent heat flux is small by comparison (only about 10% of Q^*) due to the small amount of vegetation present but increases for short periods (6-12 h) following rainfall. Additional energy supplied by anthropogenic activities and heat released from the large thermal mass of the urban surface helps to support positive sensible heat fluxes in the city all year round. Annual observed CO₂ fluxes (5.1 kg C m⁻² y⁻¹) correspond well to both modelled emissions and expectations based on findings at other sites with a similar proportion of vegetation. The net CO2 exchange is dominated by anthropogenic emissions from traffic in summer and building heating in winter. In contrast to previous urban observational studies, the effect of the orography is examined here. Innsbruck's location in a steep-sided valley results in marked diurnal and seasonal patterns in flow conditions. A typical valley-wind circulation is observed (in the absence of strong synoptic forcing) with moderate up-valley winds during daytime, weaker down-valley winds at night (and in winter) and near-zero wind speeds around the times of the twice-daily wind reversal. Due to Innsbruck's location north of the main Alpine crest, south foehn events frequently have a marked effect on temperature, wind speed, turbulence and pollutant concentration. Warm, dry foehn air advected over the surface can lead to negative sensible heat fluxes both inside and outside the city. Increased wind speeds and intense mixing during foehn (turbulent kinetic energy often exceeds 5 m² s⁻²) help to ventilate the city, illustrated here by low CO₂ mixing ratio. Radiative exchange is also affected by the orography, for example incoming shortwave radiation is blocked by the terrain at low solar elevation. Interpretation of the dataset is complicated by distinct temporal patterns in flow conditions and the combined influences of the urban environment, terrain and atmospheric conditions. The analysis presented here reveals how Innsbruck's mountainous setting impacts the near-surface conditions in multiple ways, highlighting the similarities with previous studies in much flatter terrain and examining the differences, in order to begin to understand interactions between urban and orographic processes.

34 1 Introduction

35 Driven by the need to better understand the environment in which we live, the number of micrometeorological 36 studies in urban areas has grown considerably over the last twenty years, expanding the temporal coverage, breadth 37 of surface and climatic conditions and variety of locations observed. Urban eddy covariance measurements have 38 been made across a range of surface types, including urban parks (e.g. Kordowski and Kuttler, 2010; Lee et al., 39 2021), vegetated suburban neighbourhoods (e.g. Grimmond and Oke, 1995; Crawford et al., 2011; Ward et al., 40 2013), densely-built city centres (e.g. Grimmond et al., 2004; Gioli et al., 2012; Kotthaus and Grimmond, 2014a) 41 and high-rise districts (Ao et al., 2016). A few studies have investigated different sites within the same city, for 42 example in Basel (Rotach et al., 2005), Melbourne (Coutts et al., 2007b) and Łódź (Offerle et al., 2006), in order 43 to isolate the effect of surface characteristics on exchange processes under similar synoptic and climatic conditions. 44 While the majority of studies focus on mid-latitude European or North American cities, observations have also 45 been made in Asia (e.g. Moriwaki and Kanda, 2004; Liu et al., 2012), Africa (Offerle et al., 2005b; Frey et al., 46 2011) and South America (e.g. Crawford et al., 2016), at higher latitudes (Vesala et al., 2008) and in (sub-) tropical 47 climates (e.g. Weissert et al., 2016; Roth et al., 2017). However, very few studies have addressed surface exchange 48 and turbulence characteristics for urban areas in hilly or mountainous regions.

For historical reasons many cities are situated in complex topography such as in valleys or basins or along coastlines (Fernando, 2010). With high densities of people living in such areas, knowledge of how cities and their surroundings interact is of great relevance to the health and well-being of the human population. Compared to non-urban, flat, horizontally homogeneous terrain both urban and mountainous environments can have major effects on atmospheric transport and exchange. Both environments present physical obstacles to the flow and are characterised by extreme spatial variability. Orography gives rise to various phenomena which interact across a range of spatial and temporal scales, including the mountain-plain circulation, valley winds, slope winds, gap flows, downslope windstorms, mountain waves and cold-air pools (Whiteman, 2000). In the urban environment anthropogenic activities release heat and pollutants, the large thermal mass of buildings and manmade surfaces

- store and release a significant amount of heat, and the lack of vegetation and pervious surfaces limits water
- 59 availability, all of which impact surface-atmosphere exchange and boundary layer characteristics (Oke et al.,
- 60 2017).
- 61 Cities in mountainous terrain often experience extreme weather such as windstorms, heavy snowfall and flooding.
- 62 Air quality can be a major issue, especially in urbanised valleys during winter when inversions and terrain can
- 63 prevent dispersion of pollutants (e.g. Velasco et al., 2007; Largeron and Staquet, 2016). On the other hand, slope
- and gap flows can transport pollutants into adjacent valleys or across long distances (Gohm et al., 2009; Fernando,
- 65 2010). Local- and mesoscale flows affect the city climate and can act to ameliorate or exacerbate heat stress (e.g.
- a cool sea breeze versus warm foehn) (Hirsch et al., 2021). There is a real need for turbulence observations to
- 67 develop process understanding, evaluate model performance and improve predictive capabilities in complex
- 68 terrain, particularly when meteorologically based tools and expertise are used to inform planning or policy
- 69 decisions that have direct consequences for human and environmental health (Rotach et al., submitted). Measures
- 70 that have been successfully applied to other cities may have inadvertent effects when applied to a different city,
- especially one with very different surroundings. For example, attempts to mitigate the urban heat island can
- 72 interfere with the circulation patterns in complex terrain and have a detrimental effect on air quality (Henao et al.,
- 73 2020). Numerical modelling is indispensable for investigating such effects, but if models are applied to areas where
- 74 they have not been carefully evaluated, the output may be inaccurate and measures could be implemented that
- 75 have unintended consequences or even act to exacerbate rather than ameliorate the situation.
- 76 Most previous urban-related studies in or near complex terrain focused on dispersion of pollutants (e.g. Allwine
- et al., 2002; Doran et al., 2002; Velasco et al., 2007) or used routinely measured variables such as air temperature
- and near-surface wind speed to demonstrate the presence of an urban heat island and/or regional circulations (e.g.
- 79 Miao et al., 2009; Giovannini et al., 2014). More recently, Doppler-wind lidars have been used to capture flow
- patterns in urbanised valleys, such as above the cities of Passy (Sabatier et al., 2018), Stuttgart (Adler et al., 2020)
- 81 and Innsbruck (Haid et al., 2020). The scarcity of turbulence observations in complex terrain, especially urban
- 82 complex terrain, means there is very little information available on how the orographic setting of a city affects
- surface-atmosphere exchange. In Salt Lake Valley the relation between cold-air pools and CO₂ mixing ratio has
- been studied in winter (Pataki et al., 2005) and the impact of land cover differences on CO₂ fluxes has been
- 85 examined in summer (Ramamurthy and Pardyjak, 2011). A short campaign in suburban Christchurch indicated
- differences in energy partitioning between foehn flow and sea breeze conditions (Spronken-Smith, 2002) and a
- 87 summertime campaign in Marseille found small differences between katabatic flow and sea breeze conditions
- 88 (Grimmond et al., 2004).
- 89 The focus of this study is the city of Innsbruck, Austria, located in a steep-sided Alpine valley. Innsbruck thus
- 90 represents an urban site in extremely complex terrain, in contrast to most previous studies where the terrain is
- 91 typically at a greater distance from the site and/or much less complex (mostly flat). The two main research goals
- 92 are to investigate how surface-atmosphere exchange of energy and mass for a city in a complex orographic setting
- 93 compares to other sites in the literature which are in much less complex terrain, and to examine the effect of the
- 94 orographic setting on near-surface conditions in the city. The multi-year dataset analysed here allows for
- 95 characterisation of the radiation budget, energy balance terms and carbon dioxide exchange, exploration of
- 96 temporal variability from sub-daily to interannual timescales and investigation of a variety of conditions. The paper
- 97 is organised as follows. Section 2 provides details of the site, instrumentation and data processing. In Section 3 the
- 98 source area characteristics are explored and in Section 4 an overview of the climate and meteorological conditions
- 99 is given to set the dataset in context. Sections 5-9 comprise the presentation and discussion of results, including
- 100 flow and stability (Section 5), radiation and energy balance (Sections 6-7), CO₂ fluxes (Section 8) and the effects
- 101 of different flow regimes (Section 9). Findings are summarised and conclusions drawn in Section 10. A second
- paper (Ward et al., in prep.) will examine the turbulence characteristics in more detail.

2 Methods

2.1 Site description

- 105 Innsbruck is a small city in the northern European Alps with a population of 132,000 (Statistik Austria, 2018). The
- city is built along the east-west oriented Inn Valley and extends approximately 7 km in the along-valley direction
- and 2-3 km in the cross-valley direction (Figure 1). Most of the built-up area is confined to the reasonably flat

103

- 108 valley floor. The northern edge of the city is bounded by the Nordkette mountain range, which rises steeply from
- 109 the valley floor; the southern side of the valley is less steep. Agricultural land and smaller urban settlements lie to
- 110 the west and east of the city and the valley slopes are mainly forested (up to the tree line). The valley floor is about
- 111 570 m above sea level (a.s.l.) and the surrounding terrain rises to over 2500 m a.s.l. with a peak-to-peak distance
- 112 across the valley of 15-20 km. The north-south oriented Wipp Valley exits into the Inn Valley just to the south of
- 113 the city.
- 114 Turbulence observations have been made on top of the university building close to the centre of Innsbruck since
- 115 2014. In May 2017 the measurement tower was relocated from the north-eastern side to the south-eastern corner
- 116 of the university building rooftop as part of the development of the Innsbruck Atmospheric Observatory (IAO).
- 117 The IAO comprises a suite of instruments for studying urban climate and air quality (Karl et al., 2020). Besides
- 118 basic meteorological variables and in situ fast-response measurements of wind, temperature, water vapour and
- 119 carbon dioxide, many trace gases and aerosols are also observed (e.g. Karl et al., 2017; Deventer et al., 2018; Karl
- 120 et al., 2018), plus vertical profiles of wind using a Doppler lidar (Haid et al., 2020; Haid et al., 2021) and
- 121 temperature and humidity using a microwave radiometer (Rotach et al., 2017). The focus of this study is on the
- 122 surface-atmosphere exchange of momentum, heat and mass, observed using the eddy covariance (EC) technique.
- 123 Innsbruck has a small historical core surrounded by predominantly residential areas and industrial zones towards
- 124 the edges of the city. In the city centre the buildings are closely packed and typically around 6 storeys; away from
- 125 the centre the buildings are more spread out and slightly lower (3-4 storeys). Based on the local climate zones of
- Stewart and Oke (2012), the majority of the city is 'open midrise' with 'compact midrise' in the old city core. 126
- 127 The IAO site is located a few hundred metres south-west of the city core. The mean building height within a radius
- 128 of 500 m is 17.3 m and mean tree height is 10.1 m. The modal building height, z_H is approximately 19 m. The
- 129 zero-plane displacement height, z_d , is estimated at 13.3 m (based on 0.7 times the modal building height since the
- 130 mean building height is reduced by small buildings in courtyards which do not impact the flow (Christen et al.,
- 131 2009)) and the roughness length, zo, at 1.6 m (Grimmond and Oke, 1999). The average land cover composition
- 132 within 500 m of IAO is 31% buildings, 24% paved surfaces, 18% roads, 19% vegetation and 8% water. The Inn
- 133 River flows from south-west to north-east at a distance of about 100-200 m from IAO (Figure 2). A more detailed
- 134 source area analysis is presented in Section 3.

Instrument details

135

145

- 136 A sonic anemometer (CSAT3A, Campbell Scientific) and closed-path infrared gas analyser (EC155, Campbell
- 137 Scientific) are installed on a lattice mast at a height of 9.5 m above the rooftop of the university building
- 138 (47°15'50.5" N 11°23'08.5" E, elevation 574 m a.s.l.), giving a sensor height z_s of 42.8 m above ground level
- 139 (i.e. $z_s/z_H = 2.3$). The three wind components, sonic temperature and molar mixing ratios of water vapour and
- 140 carbon dioxide are logged at 10 Hz (CR3000, Campbell Scientific). A four-component radiometer (CNR4, Kipp
- 141 and Zonen) at a height of 42.8 m provides incoming and outgoing shortwave and longwave radiation, and
- 142 temperature and relative humidity are also measured (HC2S3, Campbell Scientific). Rainfall is recorded by a
- 143 weighing rain gauge (Pluvio, OTT Hydromet) at 2 m above ground level a few hundred metres south-west of IAO
- $(47^{\circ}15'35.5" \text{ N } 11^{\circ}23'03.2" \text{ E}).$ 144

Data processing

- 146 Data are processed to 30-min statistics using EddyPro (v7.0.7, LI-COR Biosciences). The following standard steps
- 147 are implemented: despiking of raw data, double rotation to align the wind direction with the mean 30-min flow,
- 148 time lag compensation by seeking maximum covariance, correction of sonic temperature for humidity (Schotanus
- 149 et al., 1983), and correction for low and high frequency losses (Moncrieff et al., 2004; Fratini et al., 2012).
- 150 Subsequent quality control removes data when instruments malfunction and during maintenance, when the wind
- 151 direction (WD) is within $\pm 10^{\circ}$ of the direction of sonic mounting (309°), when the magnitude of the pitch angle 152
- exceeds 45°, when data fall outside physically reasonable thresholds (absolute limits and a despiking test by
- 153 comparing adjacent data points), or when conditions are non-stationary (following Foken and Wichura (1996) with
- 154 a threshold of 100%). As for other urban studies, no data were excluded on the basis of skewness or kurtosis tests 155 and the so-called integral turbulence characteristic tests (Foken and Wichura, 1996) have not been applied here.
- 156 These tests are based on typical values and scaling relations observed over simpler surfaces and thus may not be
- 157 appropriate for more complex sites (Crawford et al., 2011; Fortuniak et al., 2013; Järvi et al., 2018). Moreover,

177

178

179

196

- 158 the applicability of scaling relations to this dataset is one of the aspects we wish to analyse (Ward et al., in prep.).
- 159 Following quality control, 83%, 72% and 79% of sensible heat (Q_H) , latent heat (Q_E) and $CO_2(F_{CO2})$ flux data are
- 160 available for the four-year study period: 01 May 2017-30 April 2021. All data are presented in local Central
- 161 European Time (CET = UTC+1).

2.4 Additional measurements

163 Data from short-term field campaigns and various monitoring stations are used here to support analysis of the IAO dataset. As part of the PIANO project investigating foehn winds (Haid et al., 2021; Muschinski et al., 2021; Umek 164 et al., 2021), EC measurements were made at a height of 2.5 m at a grassland site at Innsbruck airport 3.4 km west 165 166 of IAO (47°15'19.4" N 11°20'34.2" E, 579 m a.s.l., Figure 1). The station, hereafter referred to as FLUG, was 167 operated from 15 September 2017-22 May 2018 (although data transmission issues resulted in a low data capture 168 rate for September). A similar closed-path eddy covariance system (CSAT3A + EC155) and four-component 169 radiometer (CNR4) to those at IAO were deployed, along with two soil heat flux plates at 0.05 m depth (HFP01, 170 Hukseflux), a temperature and humidity probe (HC2S3), a tipping bucket rain gauge (ARG100, Campbell 171 Scientific) and soil temperature sensors (107, Campbell Scientific). Data were logged at 20 Hz and processed in 172 the same way as for the IAO station (Section 2.3). The soil heat flux at the surface was estimated from the average 173 heat flux measured by the plates adjusted to account for the heat stored in the soil layer between the plate and the 174 surface based on the soil temperature at 0.02 m depth. This adjustment makes a considerable difference to the 175 magnitude and phase of the soil heat flux. Comparison of the FLUG dataset with IAO is helpful for distinguishing 176 urban-related characteristics from other controls and offers some insight into spatial variability in the Inn Valley.

Additional meteorological data from several stations installed as part of the PIANO campaign (labelled P2-4, P5-

8, PAT and THA in Figure 4) and those operated by the Austrian national weather service ZAMG (Z1-3 in Figure

180 Source area analysis at IAO

181 To assist interpretation of the IAO dataset the flux footprint parameterisation of Kljun et al. (2015) was used to 182 provide an indication of the likely source area characteristics and their variability under different conditions. Figure 2 shows the estimated source area for the study period along with the footprint-weighted land cover composition 183 184 as a function of wind direction. The shape of the source area reflects the predominance of along-valley winds 185 (Section 5). Since the area around the flux tower is fairly homogeneous, the land cover composition of the footprint 186 does not change considerably with stability or wind direction. There is a slightly larger contribution from 187 vegetation with increasing stability as the footprint extends further from the tower beyond the city centre. The total 188 impervious (paved and road) surface fraction varies little with wind direction (at about 40-50%) but the proportion 189 of roads is greater for easterly winds (\approx 30%) than westerly winds (\approx 10%). The eastern sector also has the greatest 190 proportion of buildings (around 40%) and least vegetation (10%). For the western sector there is slightly more 191 vegetation (15-20%) and the river comprises up to about 15% of the source area. The aggregated source area 192 composition for the study period is similar to the average land cover within 500 m (given in Section 2.1), with a 193 slightly lower fraction of vegetation and slightly higher fractions of buildings and paved surfaces reflecting the 194 greater weight of the footprint closer to the tower. On average, 70%/80% of the footprint lies within a radius of 195 500 m/700 m from the tower.

Meteorological conditions during the study period

4, S in Figure 1) are also used to investigate spatial variability.

- 197 Meteorological conditions during the study period are summarised in Figure 3. Innsbruck has a humid continental 198 climate with cool winters, warm summers and strong seasonality. Average monthly temperatures range from -199 0.1 °C in January to 19.8 °C in July and mean annual precipitation is 886 mm (1981-2010 normals for Innsbruck 200 University (ZAMG, 2021)). Precipitation occurs throughout the year with most rainfall in summer (Figure 3h) 201 when convective storms are frequent. Snow cover down to the valley floor is common during winter and can last 202 several weeks at rural locations along the valley (and longer at higher altitudes); in the city snow melts much faster
- 203 due to the higher temperatures and it is usually quickly cleared from roads. The increased surface albedo, α , during
- 204 times of snow cover can be seen clearly in Figure 3a.
- 205 The study period 01 May 2017-30 April 2021 was warmer and sunnier than the long-term (1981-2010) average.
- Overall 2018 was the warmest year on record in Austria, and 2017, 2018, 2019, 2020 and 2021 were 0.8, 1.9, 1.5 206

- 207 and 1.4 and 0.6 °C warmer than normal in Innsbruck (ZAMG, 2021). April 2018 and June 2019 were particularly
- 208 hot and sunny (4.5 and 4.8 °C warmer than normal), whereas September 2017, February 2018 and May 2019 were
- 209 much cooler (≥ 2 °C) than normal (with September 2017 and May 2019 also being much cloudier than normal).
- 210 While 2017 and 2019 were wetter than normal, 2018 and the first half of 2020 were drier than normal (Figure 3h).
- 211 Winter 2017-18 and 2018-19 were particularly snowy. At IAO, the observed daily mean temperature ranged from
- 212 a minimum of -9.2 °C in February 2018 to a maximum of 28.1 °C in June 2019 (Figure 3c) and the lowest (highest)
- 213 temperature recorded was -13.5 °C (37.7 °C).

214 Flow characteristics in and around Innsbruck

215 5.1 Spatiotemporal variability

- 216 Flow patterns in mountainous terrain are extremely complex and show a high degree of spatial variability. Flow is
- generally channelled along valleys with the dominant wind directions corresponding to the orientation of the valley 217
- 218 axis at a particular point (e.g. compare stations in the Inn Valley with stations in the Wipp Valley in Figure 4a).
- 219 On mostly clear-sky days with weak synoptic forcing, a valley-wind circulation often develops (e.g. Zardi and
- 220 Whiteman, 2013). These thermally driven mesoscale circulations lead to a twice-daily wind reversal with up-slope
- 221 and up-valley flows during the day and down-slope and down-valley flows during the night. Typical thermally
- 222 driven circulation patterns have been documented previously in the Inn Valley and surrounding valleys (e.g.
- 223 Vergeiner and Dreiseitl, 1987; Lehner et al., 2019). For flat sites on the valley floor (such as IAO or FLUG) flow
- 224 tends to be either up- or down-valley, while for sloping sites up- and down-slope winds are also observed (e.g. at
- 225 sites PAT, P5 and Z3 in Figure 4a). The up-slope winds usually precede the up-valley winds in the morning and
- 226 the down-slope winds precede the down-valley winds in the evening (e.g. easterly down-slope winds at PAT in
- 227 Figure 4b).
- 228 The strength and timing of the valley-wind circulation depends on meteorological conditions as well as
- 229 characteristics of the valley such as its width, height, orientation and surface cover (e.g. Wagner et al., 2015;
- 230 Leukauf et al., 2017). The up-valley flow tends to begin and end earlier in the Wipp Valley than in the Inn Valley
- 231 around Innsbruck (Dreiseitl et al., 1980). For the October example shown in Figure 4b, the up-valley flow begins
- 232 at around 10:00 CET and ends at around 16:30 CET in the Wipp Valley (sites PAT and P3), whereas in the Inn
- 233 Valley the up-valley flow begins in the afternoon (12:00-15:00 CET) and continues until the evening (18:00-21:00
- 234 CET) – although the timing varies considerably throughout the year (see Figure 5).
- 235 At the intersection of two or more valleys the flow field can be especially complex as the individual valley-wind
- 236 systems with their different magnitudes and forcings interact. Inflow or outflow from side valleys can affect the
- 237 wind field at some distance from the side valley exit. For example, site P6 in central Innsbruck mainly records the
- 238 east-west Inn Valley circulation but also detects the southerly katabatic flow from the Wipp Valley seen here as a
- 239 change in wind direction from easterly (up-valley flow in the Inn Valley) to southerly (down-valley flow in the
- 240 Wipp Valley) once the flow in the Wipp Valley reverses in the afternoon and before the down-valley flow in the
- 241 Inn Valley has fully established (Figure 4a-b). However, this outflow from the Wipp Valley is not seen less than
- 242 a kilometre away at IAO. Coplanar scans with Doppler wind lidar help to fill in the gaps between point
- 243 measurements and give an indication of the extreme spatial variability (Figure 4c, see also Haid et al. (2020)). For
- 244 the example shown, strong southerly wind speeds in the Wipp Valley exit jet can be seen mixing with weaker
- 245 winds in the Inn Valley. Using Doppler lidars over a larger area (e.g. as in Adler et al. (2020) for the Neckar
- 246 Valley, Stuttgart) would be useful for understanding these interacting flows and their role in the distribution of air
- 247 pollution within the city.
- 248 The long-term wind direction distribution at IAO is roughly bimodal, with more westerly down-valley winds than
- 249 easterly up-valley winds (Figure 4d). Although the main wind directions are roughly aligned with the axis of the
- 250 Inn Valley (about 75-255° at IAO), winds blowing down-valley are slightly more southerly and winds blowing
- up-valley are slightly more northerly. The reason for this 20-30° difference between the valley axis and the main 251
- 252 wind directions is not clear. For simplicity, up-valley winds in the Inn Valley will be referred to here as easterly
- (rather than east-north-easterly) and down-valley winds as westerly (rather than south-westerly). 254 The strong southerly winds visible in Figure 4d are foehn events (warm, dry, downslope windstorms). Due to the
- 255 location of the Brenner Pass (the lowest pass in the main Alpine crest) at the top of the Wipp Valley, strong cross-

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

Alpine pressure gradients can lead to south foehn in the Wipp Valley (about 20% of the time according to Plavcan et al. (2014)) which frequently reaches Innsbruck in spring and autumn (Mayr et al., 2004).

258 Because mountain winds are restricted by the terrain and closely connected to thermal and dynamical forcing, 259 there are strong temporal signatures in the wind regime and associated turbulence. Figure 5 shows the monthly 260 and diurnal variation in flow, stability and turbulence at IAO for all available data. Although this figure combines 261 various weather types and flow regimes, on average wind direction at IAO has a clear seasonal and diurnal cycle, 262 with westerly winds overnight and in the morning, and easterly winds during the afternoon. The duration of the 263 up-valley flow is greatest during summer, typically beginning late morning (10:00-12:00 CET) and reversing in 264 the late evening (20:00-22:00 CET), while for winter days there is not always a transition to up-valley flow and, 265 if one does occur, the up-valley flow lasts only a few hours during the late afternoon and early evening (Figure 266 5f). Similar patterns have been observed previously in Innsbruck (Vergeiner and Dreiseitl, 1987), in the Adige 267 Valley, Italy (Giovannini et al., 2017), in the Rhone Valley, Switzerland (Schmid et al., 2020) and in the western 268 United States (Stewart et al., 2002), for example.

Down-valley wind speeds (U) are 0-2 m s⁻¹ all year round at IAO (but can be larger aloft) and remain fairly constant during the night although sometimes show a small maximum in the morning. The up-valley wind speed increases as the up-valley flow establishes and peaks at around 4 m s⁻¹ in the late afternoon a few hours after the peak in temperature (Figure 5c, e). Around the time of the wind direction transition wind speeds are usually very low. These near-zero wind speeds in the middle of the day offer little relief from thermal stress in summer. Friction velocity (u*) is reasonably high due to the rough urban surface (≥ 0.2 m s⁻¹ even at night, Figure 5b). Turbulent kinetic energy (TKE) follows a similar temporal pattern to wind speed but with a slightly broader peak and larger values earlier in the day resulting from buoyancy production in the morning (Figure 5a). Dynamic instability (expressed as the stability parameter $\zeta = (z_s - z_d)/L$, where L is the Obukhov length) is greatest during the morning hours; in the afternoon the atmosphere becomes more neutral as wind speed increases with the strength of the up-valley flow. After the peak up-valley wind, conditions usually become more unstable again but, in a few cases, stable conditions are observed (Figure 5d, h) when the air temperature is close to surface temperature, wind speeds are low and the sensible heat flux is small and negative.

Stable stratification close to the surface is rarely observed at IAO ($\zeta > 0.1$ only 4.7% of the time). Studies in other densely built urban areas find similarly rare occurrences of near-surface stable conditions (Christen and Vogt, 2004; Kotthaus and Grimmond, 2014a). Even in cities with cold winters such as Montreal (Bergeron and Strachan, 2010) and Helsinki (Karsisto et al., 2015) the proportion of stable conditions is below about 10%. Within the study period, no days were identified with persistent near-surface stable stratification at IAO, in contrast to FLUG, which is usually stable overnight (see Section 7) and experiences several days with stable stratification in winter, particularly when there is snow cover. Even though strong negative heat fluxes are observed at IAO during foehn in autumn and winter (Figure 3g, Section 5.3), these are mostly classified as neutral due to the high wind speeds. Interestingly, the proportion of unstable conditions in the late afternoon is greater in winter than summer (Figure 5h), as no strong up-valley wind develops in winter. Heating of buildings also contributes additional energy to the urban atmosphere which helps to maintain unstable conditions in winter (Section 7.1). Note that although the nearsurface atmosphere in the city is almost always unstable or neutral, the valley atmosphere is often stably stratified higher up (based on temperature profiles from radiosonde and microwave radiometer, data not shown) and, in winter, strong temperature inversions can reduce vertical mixing and contribute to poor air quality. Further research is needed concerning the three-dimensional structure of the mountain boundary layer (Lehner and Rotach, 2018), particularly the transition between near-surface conditions and the valley atmosphere aloft.

Although several overall trends emerge from the average of this multi-year dataset, when looking at each day individually there is a great deal of variability resulting from the complex urban environment and, more significantly, its orographic setting. Observed wind direction is often highly variable, particularly when the wind speed is low. Some days have easterly flow in the early morning or lasting for several days, which may be low-level cold-air advection from the Alpine foreland. On some days an up-valley wind establishes but is then interrupted and sometimes later resumes and sometimes not. In some cases this can be related to a drop in solar radiation, rainfall, foehn or outflow from convection. Although easterly winds occur in the afternoon and evening on most days, textbook valley-wind days at IAO are surprisingly rare (as has also been reported for the Inn Valley by Vergeiner and Dreiseitl (1987) and Lehner et al. (2019)).

318

327

sunset.

5.2 Valley-wind case study

308 To examine valley-wind features more closely, observations at IAO and FLUG from four clear-sky days in April 309 2018 are shown in Figure 6. A fairly typical valley-wind circulation is seen in both the Inn Valley and the Wipp 310 Valley on 18, 19 and 21 April. In both valleys, wind speed is greatest for the well-established up-valley flow and 311 minima at the times of flow reversal can be seen more clearly than in the averages in Figure 5c. For these clear-312 sky conditions, the diurnal course of net radiation and temperature is smooth (radiation data at FLUG in the early 313 mornings is missing because of dew on the sensor). At IAO, surface temperature (T_{sfc}) is much larger than air 314 temperature (T_{air}) during the morning, which drives large Q_H ; in the afternoon and evening T_{sfc} remains comparable 315 to T_{air} and Q_H is smaller but remains mostly positive. At FLUG, T_{sfc} is smaller than in the city and slightly larger 316 than T_{air} during the morning but falls rapidly in the afternoon and drops below T_{air} well before sunset. Therefore, 317 Q_H peaks in the morning and becomes negative in the afternoon, supplying energy to maintain large Q_E until

319 At first, many of the characteristics appear similar on 20 April, but the lack of a wind reversal, high wind speeds 320 and the slightly distorted diurnal cycle of potential temperature at Steinach (S in Figure 1) point to foehn in the 321 Wipp Valley (Figure 6b, h-i) which seems to reach IAO and FLUG for a very short period in the afternoon. This 322 example highlights the difficulty of distinguishing between different flow regimes in certain cases, and it is quite 323 typical to have days with a valley-wind type circulation that are also influenced by foehn or other dynamically 324 forced flows. At IAO and FLUG, the matching of potential temperature to that in the Wipp Valley for a short 325 period and the slightly larger TKE values, coupled with the southerly (rather than easterly) wind at IAO suggest 326 the foehn reached these stations for a few hours in the afternoon.

5.3 Characteristics and effects of foehn

328 South foehn is most common in Innsbruck in spring (with an average of 22 days during March-May) and autumn 329 (with an average of 13 days during September-November), although there is strong interannual variability (Mayr 330 et al., 2004). The higher frequency of southerly foehn winds in spring and autumn can be seen in the wind direction 331 distributions in Figure 5f-g. In spring, foehn often reaches the floor of the Inn Valley sometimes bringing several 332 days of continuous or almost continuous foehn, strong southerly winds and intense mixing in and around 333 Innsbruck, while foehn events tend to be shorter in autumn. Depending on the local strength and depth of the cold 334 pool in the Inn Valley, a breakthrough may occur on one side of the city but not the other (Haid et al., 2020; 335 Muschinski et al., 2021; Umek et al., 2021). Foehn is rare in summer as the synoptic situation is unfavourable. In 336 winter the cold pool in the Inn Valley often prevents a breakthrough close to the surface: there may be foehn flow 337 aloft and in the Wipp Valley (Mayr et al., 2004) while closer to the surface strong westerly winds are often observed 338 in and around Innsbruck, so-called 'pre-foehn westerlies' (Seibert, 1985; Zängl, 2003), although these do not 339 necessarily precede a breakthrough. For cases where the cold pool is partially eroded, intermittent foehn can occur 340 in Innsbruck bringing periods of high wind speeds, intense turbulence and extreme spatial variability in flow and 341 temperature. Thus, depending on the timing and location of the foehn breakthrough, there can be considerable 342 differences in wind speed, wind direction, temperature and humidity within a few kilometres (Muschinski et al., 343 2021). Foehn in Innsbruck is most common in the afternoons (as the cold pool is often weakest or already dispersed 344 at this time). Processes contributing to the onset and cessation of foehn in Innsbruck are explored in detail in Haid 345 et al. (2020); Haid et al. (2021) and Umek et al. (2021).

Foehn has a marked impact on conditions in Innsbruck. Particularly during the colder months, foehn can cause the air temperature to increase by 5-15 °C and can thus play an important role in snowmelt and sublimation. Many foehn events stand out in timeseries data as high wind speeds accompanied by substantially enhanced air temperatures (Figure 3c, e). There is also a clear impact on turbulence: high air temperatures drive large negative Q_H , even in the city, and TKE values of 5-15 m² s⁻² are not uncommon (Figure 3f-g). The large spread of TKE values (as well as wind speed and friction velocity) seen outside the summer months in Figure 5 is a result of foehn (either a complete breakthrough at the surface or 'pre-foehn' conditions strongly influenced by foehn).

5.4 Foehn case studies

Three case-studies involving foehn events are presented in Figure 7 and Figure 8. For all of these cases strong southerly winds at Steinach suggest almost continuous foehn in the Wipp Valley, supported by high foehn probabilities from the statistical model of Plavcan et al. (2014). In Innsbruck, there are periods when direct foehn

reaches the floor of the Inn Valley, when deflected foehn air reaches IAO and periods when foehn does not reach the surface but nevertheless strongly influences conditions.

For 09 November to the evening of 12 November 2018 there is almost continuous foehn in the Wipp Valley with some transient breaks or weakening indicated by small changes in wind direction and slight cooling (e.g. overnight 09-10 November 2018). On the afternoons of 10, 11 and 12 November, there is a clear example of a direct foehn breakthrough at IAO, evident from the dramatic increase in temperature, the shift in wind direction from westerly to southerly and the sudden increase in wind speed and TKE (Figure 7a-g). These events last a few (4-7) hours each, during which the potential temperature at IAO matches the potential temperature in the Wipp Valley (indicating that the atmosphere is well-mixed). Overnight the cold pool in the Inn Valley re-establishes and pre-foehn westerly winds return near the surface, while foehn is still present aloft and in the Wipp Valley. On 09 November foehn does not reach IAO, possibly due to a more persistent cold pool resulting from the lower radiative input on this day. However, the impact of foehn is still felt in Innsbruck with strong pre-foehn westerlies and large TKE

The situation is somewhat different for the April 2019 case study (Figure 7j-r). Foehn is continuously observed at IAO from around midday on 22 April to midday on 26 April. The air temperature remains high throughout this period (it is around 10 °C warmer overnight than without foehn on 21 and 27 April) and, in contrast to Figure 7b, the potential temperature closely follows that in the Wipp Valley for the whole period. The wind speed is mostly high and the wind direction is mainly southerly, but north-easterly winds are observed at times indicating that southerly winds are not a necessary condition for foehn at IAO. Weak northerly or easterly winds are often a result of foehn air being deflected from Nordkette before reaching IAO (Haid et al., 2020; Umek et al., 2021). Intense turbulent mixing is evident from the high TKE values. Typically, CO_2 accumulates close to the surface overnight leading to a peak in CO_2 mixing ratio (r_{CO2}) in the early morning hours before turbulent mixing increases and the boundary layer begins to grow (Reid and Steyn, 1997; Schmutz et al., 2016). During foehn, however, the sustained mixing prevents the usual build-up of CO_2 (and other pollutants) in the nocturnal boundary layer so that there is very little diurnal variation and the usual early morning peak (visible on days without foehn overnight in Innsbruck) is not seen (compare Figure 7g, p). Because of the increased mixing and influx of clean air during foehn, the nocturnal CO_2 mixing ratios are generally lower during days with at least some foehn than on clear-sky days with calm nights (e.g. compare with Figure 6).

For the third case study (Figure 8), data are presented for both IAO and FLUG to illustrate differences due to location and surface cover. On 07, 08, 09, 10 and 13 April 2018, foehn reaches the Inn Valley during the daytime and is interrupted during the night; on 11-12 April there is no apparent interruption of the foehn (note, again, the flattened diurnal cycle of r_{CO2}). While the wind direction at IAO during the foehn periods on 07, 08 and 13 April is consistently southerly, some easterly or northerly winds are observed on 09-12 April. At FLUG, south foehn often appears as easterly winds since direct southerly flow is blocked in many cases by the mountains to the south of the site. During the interruptions to foehn in the Inn Valley, the potential temperature at IAO and FLUG drops below that in the Wipp Valley and pre-foehn westerlies are seen at both sites.

The increase in air temperature associated with the arrival of warm foehn air affects the near-surface temperature gradient and thus the heat fluxes. Studies investigating the impact of downslope winds on snowmelt over prairies in Alberta, Canada (MacDonald et al., 2018) and farmland in Hokkaido, Japan (Hayashi et al., 2005) reported reduced or negative Q_H and enhanced Q_E during foehn-type winds. A similar effect is seen at FLUG. During foehn the elevated air temperature can exceed the surface temperature and cause Q_H to decrease and turn negative long before sunset (Figure 8j, 1). Enhanced Q_E is sometimes seen accompanying the reduced Q_H (e.g. 07 and 08 April, Figure 8j). Q_H at IAO is usually positive but during foehn or pre-foehn tends to be smaller and can even be negative. Higher surface temperatures in the city mean that, even during foehn, T_{air} rarely exceeds T_{sfc} by much, so this effect is somewhat reduced. However, during the colder months this smaller temperature gradient acts to reduce Q_H and can even result in negative Q_H values, which are unusual for a city-centre site. Since evaporation is limited by the availability of water (not energy), enhanced Q_E is not observed during foehn at this urban site. However, at a suburban site in Christchurch, New Zealand with greater moisture availability due to 56% vegetation cover, negative Q_H and enhanced Q_E were observed during foehn (Spronken-Smith, 2002).

409

410

411

412

413

414

415

416

417

418

419

420

421

442

453

407 **6 Radiation balance**

6.1 Orographic shading

Similar to the way that buildings reduce the sky view factor in urban canyons (e.g. Johnson and Watson, 1984), the surrounding terrain reduces the sky view factor in valleys (Whiteman et al., 1989). This orographic shading effect is generally largest in deep, narrow valleys with a north-south orientation (e.g. Matzinger et al., 2003) but even in wider valleys local sunrise can be later and local sunset earlier compared to sunrise and sunset over flat terrain. At IAO sunrise occurs on average 45 minutes later and sunset 50 minutes earlier, although this varies throughout the year: the longest delay to sunrise is 90 minutes in winter, whereas the longest shift in sunset is 80 minutes in summer (Figure 9a-b). Since the orographic shading effect depends on the shape of the terrain relative to solar angle, for IAO the effect is smallest not in mid-summer when the sun is highest in the sky but when the solar azimuth angles around sunrise and sunset are aligned with the Inn Valley in spring and autumn. Although straightforward to calculate from a digital elevation map and solar angles (here determined using the R package solaR (Perpiñán, 2012)), orographic shading is highly spatially variable and for different locations within the city there can be differences in local sunrise/sunset times of some tens of minutes. Towards the edges of the city at the base of the north-facing slope, the total solar radiation receipt is reduced substantially.

422 The overall impact of orographic shading on the annual solar radiation receipt at IAO is small with around 2% less 423 solar radiation received over the course of the year (this is an upper limit assuming clear-sky conditions and that 424 incoming shortwave radiation, K_{\downarrow} , is zero before/after local sunrise/sunset; in reality there is a small diffuse 425 component). The impact is larger in winter when daily solar radiation receipt is reduced by about 10%. Although 426 the long-term impact of orographic shading is small at IAO, the sudden change in K_{\perp} at local sunrise or sunset can 427 be substantial (~100 W m⁻² within a few minutes, Figure 9c-d). A secondary shading effect is also observed: on 428 mostly clear-sky days cumulus clouds often form above the mountain peaks during the afternoons, making sunset 429 appear even earlier since the sun is blocked by clouds before it is blocked by terrain (Figure 9e-f). For a sloped 430 grassland site in the Swiss Alps, a large and rapid drop in K_{\perp} at local sunset has been shown to result in a drop in 431 surface temperature of 10 °C in less than 10 minutes (Nadeau et al., 2013). Such an effect would likely be smaller 432 in urban areas due to the large thermal capacity of building materials and the additional anthropogenic heat supply (which does not stop abruptly at sunset). Note that for sloping sites K_{\downarrow} may far exceed that over flat terrain 433 434 (depending on the slope and aspect of the surface relative to the direct beam solar radiation), the shape of the 435 diurnal cycle can be very asymmetrical and its peak may be shifted earlier or later (Matzinger et al., 2003; Nadeau 436 et al., 2013).

The surrounding terrain also affects longwave exchange. The smaller the sky view factor and greater the proportion of the radiometer field of view taken up by relatively warm valley slopes, as opposed to cold sky, the larger the observed incoming longwave radiation L_1 (Whiteman et al., 1989). It was not possible to quantify this effect here, however it is expected that L_1 is larger in Innsbruck than over an equivalent site in flat terrain. The principle is analogous to enhanced L_1 in street canyons due to emissions from surrounding buildings (Oke, 1981).

6.2 Atmospheric transmissivity

443 Atmospheric transmissivity was investigated using a clearness index which expresses the ratio of observed K_{\downarrow} to 444 incoming shortwave radiation at the top of the atmosphere $K_{\perp TOA}$ (calculated assuming a solar constant of 1367 W 445 m^{-2} (Peixoto and Oort, 1992)). The mean value of the clearness index for the study period is 0.45 ($K_{\perp} > 5$ W m^{-2}). 446 Considering clear-sky days only (see Appendix A), the midday (11:00-15:00 CET) clearness index is 0.74 and 447 shows some seasonal variability (Figure 10a), being highest in early spring at 0.78 when the boundary layer height 448 is considerable and water vapour content is low, and lower from summer through to winter at 0.68-0.73. This is 449 attributed to increased moisture and aerosols in the atmosphere in summer, and reduced boundary layer growth 450 and increased pollutant concentrations in winter. Although air quality is a major issue for Alpine valleys, it is even 451 more critical for larger cities in complex terrain, such as Mexico City (Velasco et al., 2007) where air pollution 452 was found to deplete K_{\perp} by 22% compared to a rural reference site (Jáuregui and Luyando, 1999).

6.3 Albedo

- 454 At IAO the average midday (11:00-15:00 CET) albedo is 0.16. This is within the range of values previously 455 obtained for European cities, such as 0.08 in Łódź (Offerle et al., 2006), 0.11 in Basel (Christen and Vogt, 2004),
- 456 0.11 and 0.14 for two sites in London (Kotthaus and Grimmond, 2014b) and 0.16-0.18 in Marseille (Grimmond et

462

463

464

465

466

467

468

469

470

471

472

480

481

482

483

484

485

486

487

488

489

491

494

495

497

457 al., 2004). For one of the London sites and the Marseille site, light-coloured roof surfaces below the radiometers 458 led to observed albedos that were probably higher than the bulk local-scale albedo. Similarly, at IAO the radiometer 459 source area is mainly comprised of light-coloured roof and concrete surfaces, and thus the measured outgoing shortwave radiation (K_{\uparrow}) is probably slightly higher than the local-scale average. 460

As there is negligible vegetation within the radiometer field-of-view, α is fairly constant all year-round except when snow covers the surface (Figure 3a). In the city, snow is usually cleared from roads within a few hours and melts quickly on roofs. Thus, in contrast to the rural surroundings, α at IAO usually decreases quickly and returns to the lower non-snow-covered values after a few days (although heavy snow cover in January 2019 remained on rooftops and uncleared areas for longer). Snow cover at IAO and FLUG was determined from visual inspection of webcam images from the university and Innsbruck Airport. When there is a thick covering of fresh snow, α increases to about 0.4 at IAO and 0.7 at FLUG. This difference between urban and rural values is partly due to the large proportion of non-snow-covered vertical walls seen by the IAO radiometer and partly due to the short duration of pristine snow cover in the city (before clearing or melting occurs). The IAO values obtained here are also lower than for a suburban site in Montreal (0.6-0.8) where the duration of snow cover is much longer (Järvi et al., 2014). During non-snow periods, α at FLUG is about 0.21 (September-May dataset), similar to that observed at the Neustift FLUXNET site – a grassland site in the nearby Stubai Valley (Hammerle et al., 2008).

473 Although there is little seasonal trend in α at IAO, there is considerable variability associated with solar elevation 474 angle (θ_{elev}) , azimuth angle, cloud cover and rainfall. Due to the location of the IAO radiometer at the south-eastern 475 edge of the building, shading of the street below during the afternoon causes asymmetry in the diurnal cycle of α . 476 For similar K_{\perp} and θ_{elev} , α is up to about 0.05 smaller in the afternoon than the morning. This difference is greatest 477 during sunny conditions and almost disappears for high elevation angles (Figure 10b). α is much larger under 478 clear-sky conditions (0.15-0.20) compared to cloudy conditions (close to 0.10). Shortly following rainfall the 479 albedo drops by about 0.03 and steadily rises over the following 6 hours as the surface dries (Figure 11a).

Radiative fluxes

Figure 12 shows the seasonal and diurnal patterns and interannual variations in radiation and energy fluxes at IAO for the four-year study period. For comparison, data for FLUG are also shown for the period that the site was operational. Although interannual variability in the radiation and energy fluxes is generally small (Figure 12l-u), some differences can be identified. The shortwave radiation components show the most variability and the particularly cloudy months of September 2017 and May 2019 can be clearly seen in Figure 121. The effect of this reduced K_{\perp} is also visible in K_{\uparrow} , the net radiation (Q^*) and the sensible heat flux (Figure 12m, p, r) and to a lesser extent in the outgoing longwave radiation (L_1) (Figure 120). Except for cloudy September 2017 and February 2018, the fluxes at IAO for the period that FLUG was operational are very similar to those over the whole dataset.

Of the four radiation components, K_{\perp} has the largest annual cycle, providing an average of 38 W m⁻² (3.3 MJ m⁻² 490 day⁻¹) in December and 289 W m⁻² (25.0 MJ m⁻² day⁻¹) in June at IAO. This is the main energy input to the surface. As the albedo is fairly small and constant throughout the year, the net shortwave radiation $(K_{\downarrow} - K_{\uparrow})$ and the net 492 all-wave radiation Q^* during daytime closely follow K_1 . Comparing radiative fluxes for the same time period, K_1 493 at IAO and FLUG is very similar (for 30-min values the square of the correlation coefficient $r^2 = 0.97$), as expected given the close geographical proximity of the sites, but the extended period of snow cover at FLUG leads to much higher K_1 than at IAO during winter (Figure 12b). This also leads to a substantial difference in Q^* (Figure 12e). 496 Average Q^* for February 2018 was 27 W m⁻² (2.3 MJ m⁻² day⁻¹) at IAO compared to only 2 W m⁻² (0.2 MJ m⁻² day⁻¹) at FLUG.

498 Outgoing longwave radiation follows a clear diurnal cycle all year round, which is of considerable amplitude (> 499 100 W m⁻²) during summer. Only on days with very little solar radiation does L_1 depart from this pattern. L_1 is 500 higher in summer than in winter because the surface temperature is higher. Compared to the grassland site, L_1 is 501 larger in the city and remains higher in the evenings and overnight (Figure 12d), as stored heat is slowly released 502 from the urban fabric and anthropogenic activities continue to provide energy. Incoming longwave radiation has 503 a less repeatable diurnal pattern, as it is influenced to a much greater extent by cloud cover and thus is more 504 variable, particularly during winter. Only on clear-sky days does L₁ follow a smooth diurnal cycle. While the net 505 shortwave radiation $(K_{\downarrow} - K_{\uparrow})$ is positive all year round (zero at night), the net longwave radiation $(L_{\downarrow} - L_{\uparrow})$ is

- negative all day and all year as L_{\uparrow} almost always exceeds L_{\downarrow} (except for a few cases (<2%) which occur mainly
- when the surface is covered with snow).
- From November to January, the net longwave loss is similar to the net shortwave gain and daily Q^* is close to
- 509 zero (Figure 12p). The magnitudes of the net longwave loss and the net shortwave gain both increase towards
- 510 summer, but the net shortwave gain increases faster resulting in a substantial net radiative energy input. Average
- 511 Q* is -4 W m⁻² (-0.4 MJ m⁻² day⁻¹) in December and 159 W m⁻² (13.7 MJ m⁻² day⁻¹) in June with typical peak
- 512 daytime values of 120 W m⁻² in December and 540 W m⁻² in June/July. At night Q* is negative as a result of
- 513 longwave cooling, more so in summer than winter, and more so at the urban site than the rural site (Figure 12e).

514 7 Energy balance

515

7.1 Anthropogenic heat flux

- 516 In the urban environment, the available energy is supplemented by additional heat released from human activities
- 517 (Oke et al., 2017). This anthropogenic heat flux (Q_F) includes energy use in buildings (Q_B) and for transportation
- 518 (Q_V) as well as energy from human metabolism (Q_M) . Here, Q_F was estimated as described in Appendix B using a
- 519 typical inventory approach similar to that at other sites (e.g. Sailor and Lu, 2004). For this area of Innsbruck, Q_F
- 520 is estimated to provide an average of 9-19 W m⁻² per day (of which approximately 1 W m⁻², 5 W m⁻² and 3-14 W
- 521 m^{-2} are from Q_M , Q_V and Q_B , respectively). Q_F is highest in the coldest months when the demand for building
- heating is greatest and most of the interannual variability (Figure 12q) is due to temperature. However, Q_F is lower
- 523 than would otherwise be expected in March-April 2020 and November 2020-January 2021 due to a substantial
- 524 reduction in traffic during Coronavirus lockdowns (no information was available about how building energy use
- 525 changed over this period, however). The magnitude of Q_F for this site in the centre of a small city lies between the
- typical values of 5-10 W m⁻² found for suburban sites (e.g. Pigeon et al., 2007; Bergeron and Strachan, 2010; Ward
- 527 et al., 2013) and the much higher values (> 40 W m⁻²) obtained for central sites in larger and more densely built
- 528 cities (e.g. Ichinose et al., 1999; Nemitz et al., 2002; Hamilton et al., 2009). Q_F is about 20% less on non-working
- days (i.e. weekends and holidays) compared to working days.
- 530 Although the anthropogenic energy input is small compared to the net radiation in summer, Q_F becomes a more
- significant source of energy in winter. During winter daytime, Q_F accounts for around 20% of the available energy
- 532 (i.e. $Q^* + Q_F$). On a 24-h basis, Q_F increases the available energy from close to zero to around 20 W m⁻² in winter
- (Figure 12p, q), which helps to maintain a positive sensible heat flux all year round (Figure 12g, r). Furthermore,
- 534 Q_F affects the difference in available energy between the city and rural surroundings (where Q_F is assumed to be
- 535 zero), enhancing spatial variability in turbulent fluxes which could impact local circulation patterns and cold pool
- 536 evolution.

537 7.2 Net storage heat flux

- 538 The net storage heat flux, ΔQ_s , is another important term in the urban energy balance but very difficult to measure
- directly (Offerle et al., 2005a). Two commonly used approaches are used to estimate ΔQ_S here. The first approach
- is the Objective Hysteresis Model (OHM) of Grimmond et al. (1991) which calculates ΔQ_S from Q^* , the rate of
- change of Q^* and empirical coefficients for different land cover types (see Appendix C for details). The second
- 542 approach estimates ΔQ_S as the residual (RES) of the energy balance ($\Delta Q_S = Q^* + Q_F Q_H Q_E$). Both approaches
- 543 have limitations. OHM relies on coefficients derived from a handful of observations or simulation studies and does
- not account for changes in surface conditions (e.g. soil moisture), while the residual approach ignores advection,
- 545 assumes the energy balance is closed (which it likely is not) and errors in the other energy balance terms collect
- in the estimate of ΔQ_s . Nevertheless, for IAO the two storage heat flux estimates are in remarkably good agreement
- 547 (Figure 12i). The magnitude of ΔQ_{S_OHM} is slightly smaller than ΔQ_{S_RES} but the seasonal and diurnal cycles are 548 well represented overall. This contrasts with two UK sites where OHM was found to perform poorly in winter,
- 549 underestimating the daytime storage release in central London and overestimating the storage release over the
- whole day in suburban Swindon (Ward et al., 2016).
- 551 During the day, when heat is being stored in the large thermal mass of the buildings and roads, ΔO_S is large and
- 552 positive (with peak daytime values of 230 W m⁻² in summer and 40 W m⁻² in winter). At night, stored heat is
- released to the atmosphere. The substantial negative ΔQ_S (\approx -50 W m⁻²) during night-time supports the positive
- 554 sensible heat fluxes and appreciable longwave cooling. The larger the available thermal mass (i.e. the more densely

- 555 built the city), the greater the potential to store heat (hence, the ground heat flux at FLUG is much smaller in
- 556 comparison). From April to August, more heat is stored in the urban fabric than released, whereas the opposite is
- 557 true from October to February (Figure 12t). In theory, the losses and gains should cancel over the year but here
- 558 ΔQ_{S_OHM} and ΔQ_{S_RES} yield a small net gain (2.4 and 6.5 W m⁻²), similar to previous studies (Grimmond et al.,
- 559 1991).

7.3 Turbulent heat fluxes

- 561 As has been observed at other densely built city-centre sites, such as Basel (Christen and Vogt, 2004), Łódź
- 562 (Offerle et al., 2005a) and London (Kotthaus and Grimmond, 2014a), the sensible heat flux generally remains
- 563 positive all day and all year round at IAO (Figure 12g, r). Daily average Q_H ranges from 28 W m⁻²
- 564 (2.4 MJ m⁻² day⁻¹) in December to 77 W m⁻² (6.7 MJ m⁻² day⁻¹) in June. Peak average daytime Q_H is highest in
- 565 April and remains fairly constant above 180 W m⁻² April to August. Average night-time values are positive at
- around 10-15 W m⁻². The latent heat flux is much smaller (Figure 12h, s) with daily average values from 7 W m⁻²
- 567 (0.6 MJ m⁻² day⁻¹) in December-January to 26 W m⁻² (2.3 MJ m⁻² day⁻¹) in June-July. Peak daytime values average
- around 55 W m⁻² in summer (i.e. less than a third of peak Q_H values) and Q_E remains small and positive overnight
- 569 (4-8 W m⁻²). Thus, most of the available energy is directed into either heating the atmosphere (Q_B) or heating the
- 570 surface (ΔQ_S) .

571 **7.4 Energy partitioning**

- 572 To facilitate comparison between sites, energy fluxes are often considered relative to the net radiation. The values
- 573 of the resulting ratios depend on the time of day considered (e.g. midday, daytime, 24-h) as well as season (Figure
- 574 13). At IAO month-to-month variation in the energy flux ratios is quite small from late spring to early autumn but
- the ratios change more quickly (and are more variable) in winter when the energy supplied is smaller and days are shorter. O_H/O^* is 0.42, $\Delta O_S/O^*$ is 0.40 and O_E/O^* is 0.14 on average during summer daytime. During winter
- shorter. Q_H/Q^* is 0.42, $\Delta Q_S/Q^*$ is 0.40 and Q_E/Q^* is 0.14 on average during summer daytime. During winter Q_H/Q^* is larger (around 0.65) and $\Delta Q_S/Q^*$ is smaller, partly due to the additional anthropogenic energy input from
- building heating and the tendency for heat that has been stored in the urban environment to be released. Daytime
- 579 Q_E/Q^* is lowest in February-April at < 0.1 and highest in August-October at 0.14-0.15, roughly corresponding to
- 580 seasonal variability in rainfall (Figure 3h); the small amount of vegetation likely makes only a minor contribution
- to increased evapotranspiration during summer. The Bowen ratio $(\beta = Q_H/Q_E)$ is largest between January and April
- 582 at 5.4-5.5 and decreases in the summer months to a minimum of 2.5 in August (average daytime values).
- 583 As there are few vegetated or pervious surfaces in the centre of Innsbruck, there is little possibility for rainwater
- to infiltrate and be stored in the urban surface so the effect of rainfall on the surface energy balance is short-lived.
- 585 When surfaces are wet shortly after rainfall, enhanced evaporation rates are observed (Figure 11b-c). Directly
- following rainfall Q_E/Q^* is around 0.35 and β around 1.4; over the next 6-12 hours Q_E/Q^* falls to around 0.13 and
- β increases above 3.5. These values represent averages over the whole dataset; naturally there is variation in magnitude and drying time according to season, weather conditions and the amount of precipitation. However, the
- impact of rainfall seems to be quite short in Innsbruck. At (sub-)urban sites with a greater proportion of pervious
- impact of familian seems to be quite short in misoruck. At (sub-)urban sites with a greater proportion of pervious
- surfaces the process can take several days (Ward et al., 2013), while in central London a slightly longer drying time of 12-18 h was reported (Kotthaus and Grimmond, 2014a). The shorter time suggested for Innsbruck may be
- time of 12-18 h was reported (Kotthaus and Grimmond, 2014a). The shorter time suggested for Innsbruck may be due to the abundance of summer precipitation which would be expected to evaporate quickly from hot surfaces.
- Despite similar Q^* at IAO and FLUG (except during snow cover), the different surface characteristics lead to very
- 594 different energy partitioning. At FLUG, evapotranspiration from the grass means large Q_E values are measured in
- spring and autumn. Because more energy is used for Q_E , Q_H is much smaller (Figure 12g-h). Daytime Q_H/Q^* and
- Q_G/Q^* are around 0.1-0.2 in spring and autumn, while Q_E/Q^* exceeds 0.5 in April-May. As expected for a non-
- urban site, Q_H is negative during the night (Figure 12g).
- 598 It has been possible to link the average energy partitioning observed in previous urban studies to surface
- 599 characteristics (typically land cover) through simple empirical relations (e.g. Grimmond and Oke, 2002; Christen
- and Vogt, 2004), although these are mainly based on summertime data when most field campaigns took place.
- Almost all urban studies conclude that although Q_E can be small it is not negligible and during daytime Q_E/Q^* is
- typically between 0.1 and 0.4. The lower end of this range represents urban sites, such as IAO, with little vegetation
- 603 (e.g. sites U1 and U2 in Basel (Christen and Vogt, 2004), Marseille (Grimmond et al., 2004) or Shanghai (Ao et
- al., 2016)), while the upper end corresponds to more vegetated areas often with irrigation (e.g. suburbs of North

605 American cities (Grimmond and Oke, 1995; Newton et al., 2007)). The values obtained at IAO for Q_H/Q^* and 606 $\Delta O_{\gamma}/O^*$ are also within the range expected from previous studies: (0.2-0.5 during summer, with O_H/O^* towards the lower end of this range for vegetated and irrigated sites). At IAO slightly more energy is directed into Q_H than 607 608 ΔQ_S , as was also found for urban sites in Basel (Christen and Vogt, 2004). In Marseille, Q_H/Q^* was much larger 609 than $\Delta Q_s/Q^*$ at 0.69 and 0.27, respectively (Grimmond et al., 2004), while in Mexico City the opposite was found 610 (Oke et al., 1999). At IAO, observed β is relatively high (daytime median β is 3.7) compared to previous studies 611 but only slightly higher than would be expected (and well within the scatter) given the vegetation fraction (Figure 612 14a). Hence, it can be concluded that, on average, energy partitioning at this site in highly complex terrain does 613 not deviate substantially from the existing urban literature.

614 At shorter timescales, however, the energy balance terms are impacted by Innsbruck's orographic setting. An 615 interesting feature of observed O_H at FLUG is the unusual shape of the diurnal cycle, particularly in April and May 616 (Figure 12g). Rather than peaking close to noon, Q_H peaks in the morning and then becomes appreciably negative 617 in the afternoon, while Q_E remains large and positive until sunset. Close inspection of the time-series reveals that 618 this is largely a result of warm foehn air (i.e. warmer than the surface beneath) reaching FLUG in the afternoon 619 (Figure 8j, Section 5.4) and, since foehn occurred frequently during Spring 2018, this pattern shows up in the 620 monthly averages. However, similar behaviour is also seen on valley-wind days (Figure 6j) and has been observed 621 at other rural sites in the Inn Valley as well (Vergeiner and Dreiseitl, 1987; Babić et al., 2021; Lehner et al., 2021). 622 At IAO, the much larger Q_H and smaller Q_E means that a similar change in sign of Q_H during the afternoon is not 623 seen, but Q_H does rise earlier in the day and peak first (just before or around solar noon) while Q_E reaches its 624 maximum later in the day (after solar noon) and remains at moderate values until the evening. As a result, the 625 diurnal cycle of the Bowen ratio at IAO is asymmetrical, seen most clearly in summer (Figure 12j).

The reason for this phase shift between Q_H and Q_E is not fully understood. Frequent afternoon thunderstorms seem to enhance Q_E during summer afternoons, but the trend remains if times with rain and shortly following rain are excluded. A larger vapour pressure deficit in the afternoons acting to increase Q_E could also be a contributing factor. Air temperature exceeding surface temperature during foehn (at both IAO and FLUG) or during the afternoon on some valley-wind days (at FLUG) also plays a role. The behaviour does not appear to be related to differences in radiative input (since the shift between Q_H and Q_E is also seen in the ratio of the turbulent fluxes to Q^*), nor changing source area characteristics.

Due to the temporal patterns in wind direction at this complex-terrain site (Section 5.1), the source area itself varies systematically with time of day and season, being located west of IAO (with a slightly larger vegetation fraction, a larger proportion of water and a smaller building fraction) for down-valley winds during night-times and winter months, and east of IAO (towards the city centre) for up-valley winds during summer daytimes. There is no clear evidence of spatial variations in energy partitioning as a result of surface cover variability around the site, although some variation with wind direction is observed as a result of differences in weather conditions (e.g. fair weather tends to coincide with daytime up-valley winds). The slightly higher vegetation fraction for down-valley winds is not large enough to generate a discernible increase in evaporative fluxes for this wind sector. Furthermore, the river, despite its proximity, does not provide a strong evaporative flux that is detected by the instruments. Similar results were found in central London, where a major river passes close to the measurement site yet appears not to contribute to the observed moisture flux (Kotthaus and Grimmond, 2014b). Perhaps an internal boundary layer forms over the river which does not reach the instrument height, or the low water temperature could limit evaporation (Sugawara and Narita, 2012).

8 Carbon dioxide exchange

The observed CO_2 fluxes (F_{CO2}) at this city-centre site are dominated by anthropogenic emissions. F_{CO2} is positive throughout the day and all year round (Figure 12k, v). Similar to other city-centre sites (e.g. Nemitz et al., 2002; Björkegren and Grimmond, 2017; Järvi et al., 2019), the highest values are generally observed during the middle of the day, but the shape of the diurnal cycle at IAO varies throughout the year. In the winter months the flux is slightly higher either side of midday and more closely resembles the typical double-peaked diurnal cycle often attributed to rush-hour activities, while in summer the peak appears to be shifted towards the afternoon.

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649 650

651

In contrast, there is clear photosynthetic uptake at the grassland site (FLUG) during the growing season (Figure 12k). Here, daytime F_{CO2} during spring and autumn follows a typical light-response curve when plotted against photosynthetically active radiation, PAR (Figure 15a), estimated as a proportion (0.47) of K_{\perp} (Papaioannou et al., 1993). At IAO there is little dependence of F_{CO2} on PAR (for small PAR the tendency for F_{CO2} to increase as PAR increases is because both anthropogenic activity and K_{\perp} are largest in the middle of the day). At FLUG, the increase in night-time F_{CO2} with temperature (Figure 15b) suggests soil respiration is responsible for increased emissions during night-time in spring and autumn (Figure 12k). At IAO, any contribution of soil respiration is minor. Indeed, the opposite behaviour is seen, and CO2 emissions decrease with increasing temperature as demand for building heating falls. Although anthropogenic emissions far outweigh any biogenic contributions to the observed CO2 fluxes, it is possible to identify biogenic signals in other gases at IAO (Karl et al., 2018; Kaser et al., 2021).

To further explore the anthropogenic controls on F_{CO2} at IAO, the dependence on air temperature is shown at daily and monthly timescales in Figure 15c-d. At the daily timescale, there is a clear linear decrease in F_{CO2} with increasing temperature up to around 18 °C, above which F_{CO2} remains constant. This type of behaviour suggests a substantial contribution of fuel combustion for building heating to observed F_{CO2} (Sailor and Vasireddy, 2006; Bergeron and Strachan, 2011). On average the data suggest that fuel combustion for space heating releases an extra 0.5 µmol m⁻² s⁻¹ CO₂ for every 1 °C decrease in temperature, although this is thought to be an underestimate as the seasonal variability in amplitude is smaller than might be expected (see below). Assuming negligible contribution from photosynthesis or soil respiration, the temperature-independent anthropogenic emissions amount to an average of 11.4 and 8.0 µmol m⁻² s⁻¹ on working and non-working days, respectively. These approximately temperature-independent emissions are attributed to human metabolism, fuel combustion for transport and fuel combustion in buildings that is not associated with space heating (e.g. for cooking or heating water).

The scatter seen in Figure 15c arises from various factors, including the changing measurement source area, variability in human behaviour and the impact of weather conditions besides temperature (such as snow, rain or solar radiation affecting people's perception of temperature). The timing of unusually cool or warm spells affects energy consumption (e.g. a cold spell in September is likely associated with lower emissions than for the same temperature in December because people may not have switched on their heating yet). Similarly, high temperatures during foehn also contribute to deviations, particularly during winter (days with foehn tend to have higher emissions than would be expected given the temperature). Observed F_{CO2} is higher on working days compared to non-working days by about 4 μ mol m⁻² s⁻¹. Although working and non-working days have already been separated, emissions on Sundays tend to be lower than on Saturdays and there is also some variability Monday-Friday. During the Coronavirus restrictions, reduced emissions resulted in generally lower observed F_{CO2} , particularly on working days (see also Lamprecht et al., 2021).

The temperature dependence of building heating demand explains most of the monthly variation in observed F_{CO2} (Figure 15d, square of the correlation coefficient $r^2 = 0.57$). Reduced traffic during the periods with the strictest Coronavirus restrictions in March-April 2020 and November 2020-February 2021 means observed F_{CO2} is also towards the bottom of the distribution for these months (see also Figure 12v). The highest monthly F_{CO2} was recorded for February 2018 and is considerably higher than expected given the average monthly temperature. This is attributed to a period of very cold weather towards the end of the month (Figure 3c) which coincided with easterly winds.

A marked difference in observed CO_2 fluxes with wind direction is seen at IAO. Fluxes from the eastern sector (60-120°) are about twice as high as those from the western sector (210-270°). Monthly diurnal cycles are considered to avoid biases by season and by time of day (Figure 16a, b), although easterly winds are still associated with more unstable conditions. Although the land cover composition is quite similar for these two main sectors (Section 3), the eastern sector is more densely built with a larger proportion of buildings and roads and *busier* roads (including a crossroads close to the site), whereas the western sector contains fewer roads, more widely spaced institutional buildings and more vegetation and water (Figure 2). The observed F_{CO2} data represent a combination of the spatiotemporally varying contributions of anthropogenic emissions, the variation in the flux footprint with season and with time of day and the level of turbulent mixing. The strong seasonal and diurnal dependence of wind direction (Section 5.1) must be considered when interpreting the dataset, as characteristic features arise from a mixture of temporal changes in sources and sinks combined with differences in spatial sampling due to the changing source area. For example, the shift in peak CO_2 fluxes to the afternoon that is

particularly evident in summer is likely due to the diurnal wind shifting from westerly (low emissions) to easterly (high emissions) since this asymmetry is not seen in the diurnal cycles of west and east sectors separately (Figure 16a). Nor is this behaviour seen in emissions modelled using a statistical inventory approach (analogous to the estimation of Q_F , Appendix B) which accounts for temporal variability in human activities but not spatial variability around the tower. Moreover, in winter, when westerly winds are more common, the observed data are more representative of the lower emissions from the western sector, whereas in summer the afternoon data are more representative of higher emissions from the eastern sector. This bias in source area sampling probably results in lower wintertime fluxes and higher summertime averages compared to if the observations were evenly representative of the source area. This leads to slightly smaller seasonal variation (and hence a weaker temperature dependence in Figure 15c-d), as the higher emissions in winter are partly compensated by a greater frequency of westerly winds leading to lower observed fluxes (and the opposite situation in summer). Additionally, the easterly winds during the period of cold weather in February 2018 further enhanced observed F_{CO2} during this period compared to the source-area average.

Using median diurnal cycles to gap-fill the observations (Järvi et al., 2012) gives an annual total CO₂ flux of 5.1 kg C m⁻² y⁻¹ (varying between 4.3 and 6.0 kg C m⁻² y⁻¹ for the four May-to-May twelve-month periods in the study period). For comparison, annual uptake at the nearby Neustift grassland site is 0.018 kg C m⁻² y⁻¹ (Wohlfahrt et al., 2008). The annual CO₂ flux at IAO is well within expectations given the proportion of vegetation (Figure 14b). Similar annual totals (4.9-5.6 kg C m⁻² y⁻¹) and vegetation fractions (12-29%) were found for Basel (Schmutz et al., 2016), Beijing (Liu et al., 2012), Helsinki (Järvi et al., 2019), Heraklion (Stagakis et al., 2019) and Montreal (Bergeron and Strachan, 2011). In Montreal, the annual total is higher than suggested by the vegetation fraction alone, possibly due to the cold climate (as is also the case for Vancouver (Christen et al., 2011)), while in Heraklion, where space heating emissions are small, the annual total is lower. Considering the eastern and western sectors separately at IAO gives annual totals of 7.0 and 3.3 kg C m⁻² y⁻¹, respectively. These values are also within the range suggested by previous studies if the proportion of vegetation and water in the source area is considered (10/28% for the eastern/western sectors). Even a small amount of vegetation or open water can make a substantial difference to the emissions in city centres, as it is not only photosynthetic uptake by vegetation, but also the absence of roads or buildings (which would contribute substantially to the emissions) associated with vegetated and water surfaces, that is relevant.

Modelled CO₂ emissions (Figure 16b, d) result in a similar annual total of 5.0 kg C m⁻² y⁻¹ and suggest that human metabolism accounts for 13% of the annual total emissions, traffic 35% and building energy use 53%. However, these contributions vary considerably with time of year. On a daily basis, human metabolism contributes around 1.7 μ mol m⁻² s⁻¹, fuel combustion for transport around 4.5 μ mol m⁻² s⁻¹ and building energy use around 1.6 μ mol m⁻² s⁻¹ in summer and 13 μ mol m⁻² s⁻¹ in winter. In sum, daily total emissions are around 8 μ mol m⁻² s⁻¹ in summer and 19 μ mol m⁻² s⁻¹ in winter (Figure 16d). The modelled emissions suggest working/non-working day differences are mainly due to traffic but building energy use also contributes during winter. The reasonable agreement between modelled CO₂ emissions and observed F_{CO2} give confidence that the analogously calculated anthropogenic heat flux is an appropriate estimate for the study area. The model seems to overestimate emissions from building heating in winter (Figure 16d) but this may partly result from the prevalence of westerly winds and associated underestimation of observed F_{CO2} compared to the source-area average. Future work will address the fine-scale spatial and temporal variability in emissions around the tower in more detail.

9 Impact of flow regime on near-surface conditions

Having examined the climatology at IAO and explored the controls on the energy and carbon exchange, this section summarises the effects of complex terrain flows on near-surface conditions through comparison of valley-wind days, foehn events and pre-foehn conditions. As has been shown above, although a twice-daily wind reversal is frequently observed in and around Innsbruck (Section 5.1), there are very few examples of purely thermally driven valley-wind days. Similarly, many different types of foehn can occur with different characteristics and there is often interaction with other types of flow. Given these complexities, a manual classification of different flow regimes was judged to be the most useful approach for the purposes of this analysis (see Appendix A for details).

While several case studies are presented above, Figure 17 summarises the impact of the valley-wind circulation, foehn events and pre-foehn conditions on near-surface conditions at IAO. Note that because the flow regimes

765

766 767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

occur under different synoptic conditions, the first two columns group data from different times of day (and times of year), while the third column helps to minimise the impact of diurnal and seasonal trends (although some lines are incomplete as the different regimes do not necessarily occur at all times in all seasons, for example during winter nights pre-foehn is more common than foehn).

During foehn *TKE* and gust speeds are substantially higher than during non-foehn highlighting that foehn is associated with intense turbulence as well as strong winds. *TKE* during foehn is typically between 4 and 9 m² s⁻², compared to days with a valley-wind reversal when *TKE* reaches a maximum of 2-3 m² s⁻² during the up-valley flow (Figure 17u). For pre-foehn conditions, wind speeds are comparable to those during foehn but *TKE* and gust speeds are lower (though still much higher than on valley-wind days). Up-valley wind speeds often reach 2-4 m s⁻¹ in spring and summer, slightly lower than median wind speeds during foehn, and down-valley winds are weak.

As valley-wind days are driven by the heating of the valley atmosphere and often occur on fair-weather days, the amplitude of the diurnal cycles of T_{air} and T_{sfc} as well as the difference $T_{sfc} - T_{air}$ is large and, particularly during the middle of the day, the surface is substantially warmer than the air (Figure 17y). Valley-wind days tend to have large positive Q_H which peaks early in the day (also evident in the ratio Q_H/Q^* , Figure 17z, A). During foehn, the air temperature is substantially higher, especially during autumn and winter (Figure 17n), and the diurnal cycle is much weaker (Figure 17x) since nocturnal cooling is considerably reduced if foehn continues through the night (Figure 7k; Figure 8b, k). Enhanced T_{air} during foehn frequently (54% of the time) exceeds the surface temperature and results in negative sensible heat fluxes (mainly in autumn and winter but also during the night in spring, Figure 17p, z). In these cases, the influence of foehn overcomes the influence of the urban surface (which usually maintains positive Q_H). Only 9% of Q_H data are negative at IAO, and 44% of these occur during times classified as foehn or pre-foehn. Interestingly, pre-foehn conditions tend to have similarly low Q_H as for foehn conditions (compare similar times of day and times of year in Figure 17z) despite lower air temperatures and a smaller temperature difference between surface and near-surface atmosphere. This may be a result of warm foehn air being brought down to the surface as the Inn Valley cold pool is eroded. Despite the high variability during foehn and pre-foehn, the effect of reduced Q_H during daytime and negative Q_H during night-time can be seen in the ratio Q_H/Q^* (Figure 17A). For foehn conditions daytime Q_H/Q^* is slightly smaller in spring and autumn but much smaller in winter (0.2-0.4), and night-time Q_H/Q^* changes from around -0.5 to above 0.5 (as both Q_H and Q^* are negative). There is some evidence for slightly enhanced latent heat fluxes at IAO during foehn compared to valley wind days (Figure 17B, C) but this effect is minor (smaller than at FLUG), probably because of the lack of available water at IAO.

The intense mixing that accompanies foehn consistently maintains a low CO_2 mixing ratio. The low values of r_{CO2} observed during foehn are similar to those during daytime on valley-wind days in spring and summer with considerable thermal mixing and well-developed boundary layers (Figure 17D). The dynamical mixing of foehn maintains low r_{CO2} also during the night, in contrast to nights following valley-wind days when strong cooling and low wind speeds lead to high r_{CO2} . Thus, foehn can be an important means of exchanging the air mass in the valley, particularly for urbanised valleys in autumn and winter when the trapping and build-up of emissions can be problematic. On the other hand, long-range transport and subsidence during foehn can increase levels of other atmospheric constituents such as ozone (Seibert et al., 2000). There was no discernible impact of flow conditions on the observed net CO_2 exchange, in accordance with Hiller et al. (2008) who measured CO_2 fluxes from a grassland site in an Alpine valley and also concluded there was no obvious differences in the CO_2 uptake observed during different wind regimes (foehn, valley-wind and persistent up-valley wind).

10 Summary and conclusions

Cities in mountainous terrain are subject to extreme and challenging conditions. For Innsbruck, heat stress in summer, heavy snowfall, icing and avalanches in winter, flooding, downslope windstorms and air quality are all relevant issues. Understanding the underlying physical processes and their interactions is key to better predicting the occurrence, location and magnitude of such conditions. Moreover, knowledge of how cities in complex terrain are similar to and different from cities in flat terrain is crucial to avoid inadvertent harmful effects that can result from attempts to mitigate climate issues. For such process studies (as well as for evaluation of numerical models), direct measurement techniques such as eddy covariance are extremely valuable.

- Four years of energy and carbon dioxide fluxes from the Alpine city of Innsbruck are presented and analysed. This study constitutes the first multi-year climatology of turbulence measurements from an urban area in highly complex terrain and reveals multiple ways in which Innsbruck's mountainous location impacts its meteorology. Fortunately for urban climatology and urban planners, many of the findings here are in accordance with previous urban studies, for example:
- Energy partitioning in Innsbruck is similar to that in other city centres. The considerable thermal mass of the
 urban surface stores a large amount of energy during the day and releases it at night.
- Near-surface stable conditions are rare as the release of stored heat and anthropogenic heat emissions maintain a positive sensible heat flux all day and all year round.
- The low vegetation fraction around IAO keeps latent heat fluxes small and means there is very little opportunity for water to be stored. Water supplied to the surface through precipitation thus has an impact (on the energy balance and albedo) only for a short time (6-12 h) before it evaporates or is removed as run-off.
- In good agreement with the urban literature, the proportion of vegetation is a reasonable predictor of the partitioning of energy between sensible and latent heat fluxes (in terms of summer daytime Bowen ratio) and annual CO₂ exchange.
- The annual observed CO₂ flux of 5.1 kg C m⁻² y⁻¹ is dominated by anthropogenic emissions and is in reasonable agreement with emissions estimated from a statistical inventory approach (5.0 kg C m⁻² y⁻¹), which suggests traffic is the largest source of CO₂ during summer and building heating in winter. Future work to develop a more advanced emissions model for Innsbruck will offer further insight.
- However, Innsbruck's orographic setting and mountain weather affects near-surface conditions in multiple ways and gives rise to specific features.
- The radiative fluxes are affected via orographic shading (incoming shortwave radiation is blocked by the terrain so that local sunrise/sunset is later/earlier than over flat terrain). On convective days with clear skies over the valley centre, cloud formation over the crests can further reduce solar radiation receipt during the late afternoon.
- Atmospheric transmissivity is related to the composition of the valley atmosphere which can be high in aerosols (biogenic and anthropogenic pollutants), particularly during winter.
- The thermally driven valley-wind circulation in the Inn Valley gives rise to strong diurnal and seasonal cycles in flow and turbulence. In Innsbruck the anabatic winds are stronger than the katabatic flow and the strength and duration of the up-valley wind is greatest in spring and summer. In winter weak down-valley flow dominates and the up-valley period is either very short or does not occur at all.
 - These patterns complicate interpretation of local-scale measurements since the EC source area is biased towards particular wind sectors for certain conditions. Fortunately, the relatively homogenous source area of the IAO tower means the footprint composition does not change dramatically for different conditions. No clear differences in energy partitioning related to source area characteristics could be identified but CO₂ fluxes are considerably higher for the more densely built eastern sector with busier roads than for the western sector with more vegetation and open water. As a result, the observed CO₂ fluxes likely underestimate the winter and overestimate the summer emissions compared to the neighbourhood average.
- In spring and autumn south foehn events have a marked impact on conditions in Innsbruck. High wind speeds and very large turbulent kinetic energies are observed which help to disperse urban pollutants (shown here by very low CO₂ mixing ratios).
- The advection of warm air during foehn leads to negative sensible heat fluxes even in the urban environment (and more often outside the urban area), especially in autumn and winter. The limited water availability appears to restrict Q_E in the urban environment compared to rural locations where enhanced Q_E is observed. Although Q_H can be strongly negative during foehn these conditions are usually classified by the stability parameter based on the Obukhov length as neutral (not stable) since wind speeds are high.
- The valley-wind circulation also seems to be responsible for reduced Q_H and enhanced Q_E during the afternoons. This feature is most evident at rural sites with greater availability of water, where Q_H can turn negative long before sunset but also seems to reduce Q_H in the afternoons at IAO.
- Since the local- and mesoscale circulations that occur in mountainous regions also occur to some extent over less complex terrain, as well as at great distances from the mountains, the results here are widely relevant, particularly

834

835

836

837

838

- 853 for densely populated coastal cities also subject to strong seasonal and diurnal variation in circulation patterns. For
- 854 the first time, this study describes the effects on urban surface-atmosphere exchange of a highly complex mountain
- setting using the IAO site located on the floor of the Inn Valley; future work should consider urban surfaces on 855
- sloping terrain. 856

857 Data availability

- 858 Data collected as part of the PIANO project are accessible via Zenodo (Gohm et al., 2021a; Gohm et al., 2021b;
- 859 Ward et al., 2021).

860 **Author contribution**

- $HCW\ and\ MWR\ designed\ the\ study.\ HCW\ conducted\ the\ analysis\ and\ prepared\ the\ manuscript\ with\ contributions$ 861
- 862 from all co-authors. All authors contributed to collection and processing of the various datasets involved.

863 **Competing interests**

- 864 TK is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided
- 865 by an independent editor and the authors have no other competing interests to declare.

866 Acknowledgements

- 867 This work was funded by the Austrian Science Fund (FWF) Lise Meitner programme (M2244-N32) and a
- 868 Research Stipend from Innsbruck University. Observations at IAO are possible thanks to Hochschulraum-
- 869 Strukturmittel funds provided by the Austrian Federal Ministry of Education, Science and Research, and the 870
- European Commission Seventh Framework (ALP-AIR grant number 334084). Research at IAO is also supported 871
- by FWF grants P30600-NBL and P33701-N. Part of the data collection and analysis were undertaken within the 872 framework of the PIANO project supported by the FWF and the Weiss Science Foundation (grant number P29746-
- 873 N32). We thank Florian Haidacher (Amt der Tiroler Landesregierung, Abteilung Mobilitätsplanung) for providing
- 874 official traffic data referenced in this study.

875 Appendix A Classification of conditions

876 A.1 Identification of flow regime

- 877 To enable investigation of the impact different orographic flow regimes on surface-atmosphere exchange, the
- 878 clearest examples of thermally dominated (i.e. valley-wind) and dynamically dominated (i.e. foehn) events have
- 879 been identified. In reality there are few 'textbook' cases of thermally driven or dynamically driven events; most
- days consist of a mixture of interacting processes across a wide range of scales. Hence there are very few days that 880
- can be selected as examples of a purely thermally driven valley-wind circulation (Lehner et al., 2019). Similarly, 881
- 882 foehn events can vary considerably and the beginning and end of breakthrough periods are not easy to classify
- 883 (Mayr et al., 2018), nor distinguish from pre-foehn (when conditions are strongly affected by foehn flow aloft but 884
- the foehn air does not reach the surface). Different flow regimes can give rise to similar temporal patterns in wind
- 885 speed and direction. For instance, breakthrough of foehn to the west of Innsbruck can appear similar to a thermally
- 886 driven up-valley flow, especially if the breakthrough occurs in the afternoon, appears as easterly flow and coincides 887
- with increased wind speeds (e.g. as for FLUG in Figure 8). The complexity of the situation makes automated 888 classification extremely difficult. As it is not the intention here to develop algorithms that could be used more
- 889 generally to classify different conditions, manual classification was found to be the most useful approach to
- 890 facilitate understanding of the observations at IAO and examine the impact of these different conditions on near-
- 891 surface conditions.

Valley-wind days A.1.1

- 893 Days with a transition from down-valley to up-valley flow and back again in both the Inn Valley and Wipp Valley,
- 894 with no obvious foehn or other flow type, are designated valley-wind days. The requirement for wind reversal also
- 895 in the Wipp Valley largely eliminates days with foehn flow in the Wipp Valley (for which a continuous southerly
- 896 wind is usually observed). However, days with weak synoptic forcing when a down-valley wind prevails in both

valleys (common in winter) are missed using this approach. Note that the requirement for a reversal to down-valley flow again was met if it happened shortly after midnight in the Inn Valley, as the up-valley period can last until late evening in summer (Figure 5). The results would not change significantly if the algorithm of Lehner et al. (2019) had been used to select 'ideal' valley wind (i.e. synoptically undisturbed clear-sky) days, but the manual classification includes many more days (and is not restricted to clear-sky conditions).

902 A.1.2 Foehn events and pre-foehn conditions

903 As a prerequisite for both foehn and pre-foehn conditions in the Inn Valley, south foehn had to be present in the 904 Wipp Valley (i.e. strong southerly winds at Steinach (S in Figure 1) and high foehn probabilities according to the 905 statistical mixture model of Plavcan et al. (2014)). Times when the foehn reached IAO were then judged from visual inspection of the timeseries, largely based on closely matched potential temperatures at IAO and Steinach, 906 907 but changes in air temperature, relative humidity, wind speed and direction at IAO were also taken into account. 908 Unclear events, non-south foehn and very short possible breakthroughs were ignored. Hence not all foehn events 909 are captured by this approach, – but the majority of cases and the most clear-cut cases are. Comparison with the 910 statistical foehn diagnosis algorithms of Plavcan et al. (2014) revealed good agreement in terms of diurnal and 911 seasonal patterns, although the manual approach identifies slightly more cases in winter and night-time. 912 Disagreement between methods resulted from differences in availability of required input data, uncertainty about 913 the timing of the onset and cessation of foehn (e.g. foehn ceases but the warm air mass remains) and differences 914 between the approaches used (e.g. some of the statistical methods specify southerly wind directions but deflected 915 foehn can be from a range of directions in Innsbruck, see Section 5.4). The level of agreement and reasons for 916 differences between methods are similar to those discussed between the various algorithms presented in Plavcan 917 et al. (2014): accounting for differences in data availability 95% of the times identified as foehn by the manual 918 approach are also diagnosed as foehn by the statistical algorithm that is not restricted by wind direction. The results 919 would not change substantially if one of the foehn diagnoses of Plavcan et al. (2014) had been used instead of the 920 manual approach. For the pre-foehn conditions, again south foehn had to be present in the Wipp Valley but, in 921 contrast to a foehn breakthrough, the potential temperature at IAO is usually below the foehn temperature and 922 strong westerly winds ('pre-foehn westerlies') are often observed (Zängl, 2003).

A.2 Identification of clear-sky days

923

934

924 Clear-sky days in Innsbruck were identified using timeseries plots of 1-min incoming shortwave (K_1) and longwave 925 (L_1) radiation at IAO plus visual inspection of webcam images to clarify ambiguous cases. Days with perfectly 926 smooth or almost perfectly smooth diurnal cycles of K_{\perp} and L_{\perp} were classified as clear-sky days at IAO (141 in 927 total). This manual approach was found to be more useful than using thresholds (e.g. of K_{\downarrow} relative to K_{\downarrow} at the top 928 of the atmosphere, $K_{\perp TOA}$) due to several complicating factors. These include (i) substantial variability in 929 atmospheric transmissivity even for cloud-free days (Figure 10a); (ii) short thunderstorms and associated cloud 930 cover which can develop in the late afternoon and do not dramatically affect daily K_1/K_1 TOA; (iii) cumulus clouds 931 forming above the peaks and ridges (Section 6.1) but not above the valley centre and (iv) some very high K_1/K_1 932 $_{TOA}$ values despite mostly cloudy skies which occur when the sun shines through a gap in the clouds (observed K_{\downarrow} 933 is comprised of a large direct radiation component plus appreciable diffuse radiation).

Appendix B Estimation of anthropogenic heat flux and associated carbon dioxide emissions

Anthropogenic heat flux and associated carbon dioxide emissions were estimated for the study area following a conventional approach based on available statistics (e.g. Sailor and Lu, 2004) that combines contributions from energy use within buildings, traffic and human metabolism. It is beyond the scope of this study to develop a detailed emissions model for Innsbruck (this is planned in future); the aim here is to obtain a first-order estimation to provide context for the observational analysis. For this section, all times refer to local time (UTC+1 or UTC+2 during daylight saving time).

The average metabolic energy release per person was assumed to be 175 W m⁻² cap⁻¹ when awake and 75 W m⁻² cap⁻¹ when asleep (Sailor and Lu, 2004). People are assumed to be awake 08:00-21:00 on working days and 09:00-21:00 on non-working days and asleep 23:00-06:00 on working days and 23:00-07:00 on non-working days. The population density on non-working days and during the night is 7000 km⁻² for the centre of Innsbruck (City Population, 2018) and, based on the number of commuters (Statistik Austria, 2016), was estimated to increase by

- 946 25% during working hours to 8800 km⁻². Working hours are 08:00-16:00 and non-working hours are 18:00-06:00.
- 947 During the transition times, population density and metabolic energy release were linearly interpolated.
- 948 Multiplying these two quantities gave the anthropogenic heat flux due to human metabolism. For the corresponding
- CO₂ release, emission factors of 280 µmol s⁻¹ cap⁻¹ and 120 µmol s⁻¹ cap⁻¹ were used for waking and sleeping 949
- 950 hours, respectively (Moriwaki and Kanda, 2004).
- 951 Domestic energy consumption for the study area was downscaled from the total energy consumption for the Tirol
- 952 region for 2015/2016 (Statistik Austria, 2017a) using population density. Energy consumption was available
- 953 separated into contributions from different energy sources (e.g. electricity, oil, wood, district heating and gas) and
- 954 for different purposes (classified as heating and non-heating purposes). All energy sources were assumed to
- 955 contribute to the anthropogenic heat flux, whilst the CO₂ emissions associated with electricity and district heating
- 956 were assumed to occur outside the study area and thus were not included in the CO₂ emissions estimated here.
- 957 Although wood burning is still common in smaller towns and villages in Tirol, it is no longer used much in
- 958 Innsbruck, so wood burning was apportioned to gas instead. Emission factors of 74.1 x 10⁻⁶ g CO₂ J⁻¹ for oil and
- 959 56.1 x 10⁻⁶ g CO₂ J⁻¹ for gas were used (IPCC, 2006). Daily energy use for non-heating purposes was assumed
- 960 constant, whilst daily energy use for heating purposes was assumed to scale with heating degree days (Sailor and Vasireddy, 2006): an increase in energy use of 0.45 W m⁻² K⁻¹ was obtained using a base temperature of 18.3 °C 961
- 962 (Sailor et al., 2015), which appears to be a reasonable threshold for Innsbruck based on Figure 15c. The daily
- 963 values were then downscaled to 30 min using standard profiles of building energy use for working days and non-
- 964 working days in Austria (Ghaemi and Brauner, 2009). Non-domestic building energy use is estimated as a
- 965 proportion (0.42) of domestic building energy use, given that 26%/11% of the total building energy use in Europe
- 966 is domestic/non-domestic (Pérez-Lombard et al., 2008). Non-domestic building energy use was assumed to be
- 967 70% and 50% of the working-day value for Saturdays and for Sundays and holidays, respectively. Non-domestic
- 968 energy use profiles from Hamilton et al. (2009) were used to downscale daily values to 30 min.
- 969 The total number of kilometres driven by passenger cars in Tirol in 2015/2016 (Statistik Austria, 2017b) was
- 970 scaled by population density for the centre of Innsbruck to estimate the weight of traffic in the study area
- 971 (contributions from motorcycles, public transport or goods transport are neglected in this approach). Hourly traffic
- 972 count data for 7 stations around Innsbruck for Jan 2018-Jun 2020 (provided by Amt der Tiroler Landesregierung,
- 973 Abteilung Verkehrsplanung) were used to derive average traffic rates and median diurnal cycles for four groups:
- 974 Monday-Thursdays; Fridays; Saturdays; and Sundays and holidays. Traffic rates on Fridays, Saturdays, and
- 975 Sundays and holidays were about 105%, 77%, and 55% of traffic rates on Monday-Thursdays, respectively.
- 976 Monthly traffic counts for the study period for the 7 stations around Innsbruck (Land Tirol, 2020) were used to
- 977 account for monthly and interannual variation in traffic rates across the whole study period (e.g. due to Coronavirus
- 978 restrictions). From the average traffic weight (scaled according to month, type of day and time of day), the heat
- 979 flux was calculated assuming an emission factor of 3.97 MJ km⁻¹ veh⁻¹ (Sailor and Lu, 2004). For CO₂ an emission
- 980 factor of 0.17 kg CO₂ km⁻¹ veh⁻¹ was used (Statistik Austria, 2017b). Variation of emission factor with speed and
- 981 type of vehicles was neglected as specific information was not available.

982 Appendix C Calculation of net storage heat flux

The Objective Hysteresis Model (OHM) (Grimmond et al., 1991) estimates the net storage heat flux ΔQ_S from the 983

984 net radiation Q^* :

985
$$\Delta Q_S = \sum_i f_i \left[a_{1i} Q^* + a_{2i} \frac{\partial Q^*}{\partial t} + a_{3i} \right], \tag{C1}$$

- 986 where f is the proportion of each surface cover type i, $a_{1,2,3}$ are coefficients for each surface cover type and t is
- 987 time. The coefficients were taken from the literature (Table C 1) and resulted in bulk values for 500 m around IAO
- 988 of 0.475, 0.287 and -33.1 for a_1 , a_2 and a_3 , respectively. Note that deriving bulk coefficients using observed Q^*
- 989 and ΔQ_{SRES} showed little seasonal variation at IAO in contrast to other studies (Anandakumar, 1999; Ward et al.,
- 990 2016).

991 References

992 Adler B, Kalthoff N, Kiseleva O: Detection of structures in the horizontal wind field over complex terrain using

993 coplanar Doppler lidar scans. Meteorol. Z. https://doi.org/doi.org/10.1127/metz/2020/1031, 2020.

- 994 Allwine KJ, Shinn JH, Streit GE, Clawson KL, Brown M: Overview of URBAN 2000: A Multiscale Field Study
- 995 of Dispersion through an Urban Environment. Bull. Amer. Meteorol. Soc. 83: 521-536
- 996 https://doi.org/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2, 2002.
- 997 Anandakumar K: A study on the partition of net radiation into heat fluxes on a dry asphalt surface. Atmospheric
- 998 Environment 33: 3911-3918, 1999.
- 999 Ao X, Grimmond CSB, Chang Y, Liu D, Tang Y, Hu P, Wang Y, Zou J, Tan J: Heat, water and carbon exchanges
- 1000 in the tall megacity of Shanghai: challenges and results. International Journal of Climatology 36: 4608-4624
- 1001 https://doi.org/10.1002/joc.4657, 2016.
- 1002 Asaeda T, Ca V: The subsurface transport of heat and moisture and its effect on the environment: A numerical
- 1003 model. Bound.-Layer Meteor. 65: 159-179 https://doi.org/10.1007/BF00708822, 1993.
- 1004 Babić N, Adler B, Gohm A, Kalthoff N, Haid M, Lehner M, Ladstätter P, Rotach MW: Cross-valley vortices in
- 1005 the Inn valley, Austria: Structure, evolution and governing force imbalances. Q. J. R. Meteorol. Soc.
- 1006 https://doi.org/10.1002/qj.4159, 2021.
- 1007 Balogun A, Adegoke J, Vezhapparambu S, Mauder M, McFadden J, Gallo K: Surface energy balance
- 1008 measurements above an exurban residential neighbourhood of Kansas City, Missouri. Bound.-Layer Meteor. 133:
- 1009 299-321 https://doi.org/10.1007/s10546-009-9421-3, 2009.
- 1010 Bergeron O, Strachan IB: Wintertime radiation and energy budget along an urbanization gradient in Montreal,
- 1011 Canada. International Journal of Climatology 32: 137-152 https://doi.org/10.1002/joc.2246, 2010.
- 1012 Bergeron O, Strachan IB: CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city.
- 1013 Atmospheric Environment 45: 1564-1573 https://doi.org/10.1016/j.atmosenv.2010.12.043, 2011.
- 1014 Björkegren A, Grimmond CSB: Net carbon dioxide emissions from central London. Urban Climate
- 1015 https://doi.org/10.1016/j.uclim.2016.10.002, 2017.
- 1016 Christen A, Coops N, Crawford B, Kellett R, Liss K, Olchovski I, Tooke T, Van Der Laan M, Voogt J: Validation
- 1017 of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements.
- 1018 Atmospheric Environment 45: 6057-6069 https://doi.org/10.1016/j.atmosenv.2011.07.040, 2011.
- 1019 Christen A, Rotach MW, Vogt R: The Budget of Turbulent Kinetic Energy in the Urban Roughness Sublayer.
- 1020 Bound.-Layer Meteor. 131: 193-222 https://doi.org/10.1007/s10546-009-9359-5, 2009.
- 1021 Christen A, Vogt R: Energy and radiation balance of a central European city. International Journal of Climatology
- 1022 24: 1395-1421 https://doi.org/10.1002/joc.1074, 2004.
- 1023 City Population: Population of Innsbruck by quarter. Last accessed: 20.03.2019,
- https://www.citypopulation.de/php/austria-innsbruck.php, 2018.
- 1025 Coutts AM, Beringer J, Tapper NJ: Characteristics influencing the variability of urban CO2 fluxes in Melbourne,
- 1026 Australia. Atmospheric Environment 41: 51-62 https://doi.org/10.1016/j.atmosenv.2006.08.030, 2007a.
- 1027 Coutts AM, Beringer J, Tapper NJ: Impact of increasing urban density on local climate: Spatial and temporal
- 1028 variations in the surface energy balance in Melbourne, Australia. Journal of Applied Meteorology and Climatology
- 1029 46: 477-493 https://doi.org/10.1175/jam2462.1, 2007b.
- 1030 Crawford B, Grimmond CSB, Christen A: Five years of carbon dioxide fluxes measurements in a highly vegetated
- 1031 suburban area. Atmospheric Environment 45: 896-905 https://doi.org/10.1016/j.atmosenv.2010.11.017, 2011.
- 1032 Crawford B, Krayenhoff ES, Cordy P: The urban energy balance of a lightweight low-rise neighborhood in
- 1033 Andacollo, Chile. Theoretical and Applied Climatology: 1-14 https://doi.org/10.1007/s00704-016-1922-7, 2016.

- 1034 Deventer MJ, von der Heyden L, Lamprecht C, Graus M, Karl T, Held A: Aerosol particles during the Innsbruck
- 1035 Air Quality Study (INNAQS): Fluxes of nucleation to accumulation mode particles in relation to selective urban
- tracers. Atmospheric Environment 190: 376-388 https://doi.org/10.1016/j.atmosenv.2018.04.043, 2018.
- 1037 Doll D, Ching JKS, Kaneshiro J: Parameterization of subsurface heating for soil and concrete using net radiation
- data. Bound.-Layer Meteor. 32: 351-372 https://doi.org/10.1007/BF00122000, 1985.
- 1039 Doran JC, Fast JD, Horel J: The VTMX 2000 campaign. Bull. Amer. Meteorol. Soc. 83: 537-551
- 1040 https://doi.org/doi:10.1175/1520-0477(2002)083<0537:TVC>2.3.CO;2, 2002.
- 1041 Dou J, Grimmond S, Cheng Z, Miao S, Feng D, Liao M: Summertime surface energy balance fluxes at two Beijing
- sites. International Journal of Climatology 39: 2793-2810 https://doi.org/10.1002/joc.5989, 2019.
- 1043 Dreiseitl E, Feichter H, Pichler H, Steinacker R, Vergeiner I: Windregimes an der Gabelung zweier Alpentäler.
- 1044 Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B 28: 257-275
- 1045 <u>https://doi.org/10.1007/BF02245357</u>, 1980.
- 1046 Fernando HJS: Fluid Dynamics of Urban Atmospheres in Complex Terrain. Annu. Rev. Fluid Mech. 42: 365-389
- 1047 https://doi.org/doi:10.1146/annurev-fluid-121108-145459, 2010.
- 1048 Foken T, Wichura B: Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78:
- 1049 83-105 https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
- 1050 Fortuniak K, Pawlak W, Siedlecki M: Integral Turbulence Statistics Over a Central European City Centre. Bound.-
- 1051 Layer Meteor. 146: 257-276 https://doi.org/10.1007/s10546-012-9762-1, 2013.
- 1052 Fratini G, Ibrom A, Arriga N, Burba G, Papale D: Relative humidity effects on water vapour fluxes measured with
- 1053 closed-path eddy-covariance systems with short sampling lines. Agric. For. Meteorol. 165: 53-63
- 1054 <u>https://doi.org/10.1016/j.agrformet.2012.05.018</u>, 2012.
- 1055 Frey CM, Parlow E, Vogt R, Harhash M, Abdel Wahab MM: Flux measurements in Cairo. Part 1: in situ
- 1056 measurements and their applicability for comparison with satellite data. International Journal of Climatology 31:
- 1057 218-231 https://doi.org/10.1002/joc.2140, 2011.
- 1058 Fuchs M, Hadas A: The heat flux density in a non-homogeneous bare loessial soil. Bound.-Layer Meteor. 3: 191-
- 1059 200 https://doi.org/10.1007/BF02033918, 1972.
- 1060 Ghaemi S, Brauner G: User behavior and patterns of electricity use for energy saving. Internationale
- 1061 Energiewirtschaftstagung an der TU Wien, IEWT, 2009.
- 1062 Gioli B, Toscano P, Lugato E, Matese A, Miglietta F, Zaldei A, Vaccari F: Methane and carbon dioxide fluxes
- 1063 and source partitioning in urban areas: The case study of Florence, Italy. Environmental Pollution 164: 125-131
- 1064 https://doi.org/10.1016/j.envpol.2012.01.019, 2012.
- 1065 Giovannini L, Laiti L, Serafin S, Zardi D: The thermally driven diurnal wind system of the Adige Valley in the
- 1066 Italian Alps. Q. J. R. Meteorol. Soc. 143: 2389-2402 https://doi.org/10.1002/qj.3092, 2017.
- 1067 Giovannini L, Zardi D, de Franceschi M, Chen F: Numerical simulations of boundary-layer processes and urban-
- 1068 induced alterations in an Alpine valley. International Journal of Climatology 34: 1111-1131
- 1069 <u>https://doi.org/10.1002/joc.3750</u>, 2014.
- 1070 Gohm A, Haid M, Umek L, Ward HC, Rotach MW: PIANO (Penetration and Interruption of Alpine Foehn) -
- 1071 Doppler wind lidar data set. Zenodo https://doi.org/10.5281/zenodo.4674773, 2021a.
- 1072 Gohm A et al.: Air Pollution Transport in an Alpine Valley: Results From Airborne and Ground-Based
- 1073 Observations. Bound.-Layer Meteor. 131: 441-463 https://doi.org/10.1007/s10546-009-9371-9, 2009.

- 1074 Gohm A, Umek L, Haid M, Ward HC, Rotach MW: PIANO (Penetration and Interruption of Alpine Foehn) -
- 1075 MOMAA weather station data set. Zenodo https://doi.org/10.5281/zenodo.4745957, 2021b.
- 1076 Goldbach A, Kuttler W: Quantification of turbulent heat fluxes for adaptation strategies within urban planning.
- 1077 International Journal of Climatology 33: 143-159 https://doi.org/10.1002/joc.3437, 2013.
- 1078 Grimmond CSB, Cleugh HA, Oke TR: An objective urban heat storage model and its comparison with other
- schemes. Atmospheric Environment. Part B. Urban Atmosphere 25: 311-326, 1991.
- 1080 Grimmond CSB, Oke TR: Comparison of Heat Fluxes from Summertime Observations in the Suburbs of Four
- 1081 North American Cities. J. Appl. Meteorol. 34: 873-889 https://doi.org/10.1175/1520-
- 1082 <u>0450(1995)034<0873:COHFFS>2.0.CO;2</u>, 1995.
- 1083 Grimmond CSB, Oke TR: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl.
- 1084 Meteorol. 38: 1262-1292 https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2, 1999.
- 1085 Grimmond CSB, Oke TR: Turbulent heat fluxes in urban areas: Observations and a local-scale urban
- meteorological parameterization scheme (LUMPS). J. Appl. Meteorol. 41: 792-810 https://doi.org/10.1175/1520-
- 1087 <u>0450(2002)041<0792:THFIUA>2.0.CO;2</u>, 2002.
- 1088 Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A: Flux and turbulence measurements at a densely
- 1089 built-up site in Marseille: Heat, mass (water and carbon dioxide), and momentum. J. Geophys. Res.-Atmos. 109:
- 1090 D24101 https://doi.org/D2410110.1029/2004jd004936, 2004.
- Haid M, Gohm A, Umek L, Ward HC, Muschinski T, Lehner L, Rotach MW: Foehn-cold pool interactions in the
- 1092 Inn Valley during PIANO IOP2. Q. J. R. Meteorol. Soc. 146: 1232-1263 https://doi.org/10.1002/qj.3735, 2020.
- 1093 Haid M, Gohm A, Umek L, Ward HC, Rotach MW: Cold-air pool processes in the Inn Valley during foehn: A
- 1094 comparison of four cases during PIANO. Boundary Layer Meteorology https://doi.org/10.1007/s10546-021-
- 1095 <u>00663-9</u>, 2021.
- 1096 Hamilton IG, Davies M, Steadman P, Stone A, Ridley I, Evans S: The significance of the anthropogenic heat
- 1097 emissions of London's buildings: A comparison against captured shortwave solar radiation. Building and
- 1098 Environment 44: 807-817 https://doi.org/10.1016/j.buildenv.2008.05.024, 2009.
- 1099 Hammerle A, Haslwanter A, Tappeiner U, Cernusca A, Wohlfahrt G: Leaf area controls on energy partitioning of
- 1100 a temperate mountain grassland. Biogeosciences 5: 421-431 https://doi.org/10.5194/bg-5-421-2008, 2008.
- 1101 Hayashi M, Hirota T, Iwata Y, Takayabu I: Snowmelt Energy Balance and Its Relation to Foehn Events in Tokachi,
- Japan. Journal of the Meteorological Society of Japan. Ser. II 83: 783-798 https://doi.org/10.2151/jmsj.83.783,
- 1103 2005.
- 1104 Helfter C, Famulari D, Phillips GJ, Barlow JF, Wood CR, Grimmond CSB, Nemitz E: Controls of carbon dioxide
- 1105 concentrations and fluxes above central London. Atmospheric Chemistry and Physics 11: 1913-1928
- 1106 https://doi.org/10.5194/acp-11-1913-2011, 2011.
- 1107 Henao JJ, Rendón AM, Salazar JF: Trade-off between urban heat island mitigation and air quality in urban valleys.
- 1108 Urban Climate 31: 100542 https://doi.org/10.1016/j.uclim.2019.100542, 2020.
- 1109 Hiller R, Zeeman MJ, Eugster W: Eddy-covariance flux measurements in the complex terrain of an Alpine valley
- 1110 in Switzerland. Bound.-Layer Meteor. 127: 449-467 https://doi.org/10.1007/s10546-008-9267-0, 2008.
- 1111 Hirano T, Sugawara H, Murayama S, Kondo H: Diurnal variation of CO2 flux in an urban area of Tokyo. Sola 11:
- 1112 100-103 https://doi.org/10.2151/sola.2015-024, 2015.
- 1113 Hirsch AL, Evans JP, Thomas C, Conroy B, Hart MA, Lipson M, Ertler W: Resolving the influence of local flows
- 1114 on urban heat amplification during heatwaves. Environmental Research Letters 16: 064066
- 1115 <u>https://doi.org/10.1088/1748-9326/ac0377</u>, 2021.

- 1116 Ichinose T, Shimodozono K, Hanaki K: Impact of anthropogenic heat on urban climate in Tokyo. Atmospheric
- Environment 33: 3897-3909 https://doi.org/10.1016/S1352-2310(99)00132-6, 1999.
- 1118 IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006.
- 1119 Järvi L, Grimmond CSB, Taka M, Nordbo A, Setälä H, Strachan IB: Development of the Surface Urban Energy
- 1120 and Water Balance Scheme (SUEWS) for cold climate cities. Geosci. Model Dev. 7: 1691-1711
- 1121 https://doi.org/10.5194/gmd-7-1691-2014, 2014.
- 1122 Järvi L et al.: Spatial modelling of local-scale biogenic and anthropogenic carbon dioxide emissions in Helsinki.
- Journal of Geophysical Research: Atmospheres 124: 8363-8384 https://doi.org/10.1029/2018JD029576, 2019.
- 1124 Järvi L, Nordbo A, Junninen H, Riikonen A, Moilanen J, Nikinmaa E, Vesala T: Seasonal and annual variation of
- 1125 carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010. Atmospheric Chemistry and Physics 12: 8475-
- 1126 8489 https://doi.org/10.5194/acp-12-8475-2012, 2012.
- 1127 Järvi L, Rannik Ü, Kokkonen TV, Kurppa M, Karppinen A, Kouznetsov RD, Rantala P, Vesala T, Wood CR:
- 1128 Uncertainty of eddy covariance flux measurements over an urban area based on two towers. Atmos. Meas. Tech.
- 11: 5421-5438 https://doi.org/10.5194/amt-11-5421-2018, 2018.
- 1130 Jáuregui E, Luyando E: Global radiation attenuation by air pollution and its effects on the thermal climate in
- 1131 Mexico City. International Journal of Climatology 19: 683-694 https://doi.org/10.1002/(SICI)1097-
- 1132 <u>0088(199905)19:6<683::AID-JOC389>3.0.CO;2-8, 1999.</u>
- 1133 Johnson GT, Watson ID: The Determination of View-Factors in Urban Canyons. Journal of Applied Meteorology
- and Climatology 23: 329-335 https://doi.org/10.1175/1520-0450(1984)023<0329:tdovfi>2.0.co;2, 1984.
- 1135 Karl T et al.: Studying urban climate and air quality in the Alps The Innsbruck Atmospheric Observatory. Bull.
- 1136 Amer. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-19-0270.1, 2020.
- 1137 Karl T et al.: Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe.
- Scientific Reports 7: 2536 https://doi.org/10.1038/s41598-017-02699-9, 2017.
- 1139 Karl T, Striednig M, Graus M, Hammerle A, Wohlfahrt G: Urban flux measurements reveal a large pool of
- 1140 oxygenated volatile organic compound emissions. Proceedings of the National Academy of Sciences 115: 1186-
- 1141 1191 https://doi.org/10.1073/pnas.1714715115, 2018.
- 1142 Karsisto P, Fortelius C, Demuzere M, Grimmond CSB, Oleson KW, Kouznetsov R, Masson V, Järvi L: Seasonal
- 1143 surface urban energy balance and wintertime stability simulated using three land-surface models in the high-
- latitude city Helsinki. Q. J. R. Meteorol. Soc. 142: 401-417 https://doi.org/10.1002/qj.2659, 2015.
- 1145 Kaser L, Peron A, Graus M, Striednig M, Wohlfahrt G, Juráň S, Karl T: Interannual Variability of BVOC
- 1146 Emissions in an Alpine City. Atmos. Chem. Phys. Discuss. 2021: 1-26 https://doi.org/10.5194/acp-2021-851,
- 1147 2021.
- 1148 Kleingeld E, van Hove B, Elbers J, Jacobs C: Carbon dioxide fluxes in the city centre of Arnhem, A middle-sized
- 1149 Dutch city. Urban Climate 24: 994-1010 https://doi.org/10.1016/j.uclim.2017.12.003, 2018.
- 1150 Kljun N, Calanca P, Rotach MW, Schmid HP: A simple two-dimensional parameterisation for Flux Footprint
- 1151 Prediction (FFP). Geosci. Model Dev. 8: 3695-3713 https://doi.org/10.5194/gmd-8-3695-2015, 2015.
- 1152 Kordowski K, Kuttler W: Carbon dioxide fluxes over an urban park area. Atmospheric Environment 44: 2722-
- 1153 2730 https://doi.org/10.1016/j.atmosenv.2010.04.039, 2010.
- 1154 Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR: CO2 exchange of a tropical
- 1155 rainforest at Pasoh in Peninsular Malaysia. Agric. For. Meteorol. 148: 439-452
- 1156 <u>https://doi.org/10.1016/j.agrformet.2007.10.007</u>, 2008.

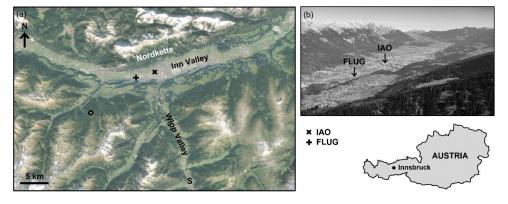
- 1157 Kotthaus S, Grimmond CSB: Energy exchange in a dense urban environment Part I: temporal variability of long-
- term observations in central London. Urban Climate 10: 261-280 https://doi.org/10.1016/j.uclim.2013.10.002,
- 1159 2014a.
- 1160 Kotthaus S, Grimmond CSB: Energy exchange in a dense urban environment Part II: impact of spatial
- 1161 heterogeneity of the surface. Urban Climate 10: 281-307 https://doi.org/10.1016/j.uclim.2013.10.001, 2014b.
- 1162 Lamprecht C, Graus M, Striednig M, Stichaner M, Karl T: Decoupling of urban CO2 and air pollutant emission
- 1163 reductions during the European SARS-CoV-2 lockdown. Atmos. Chem. Phys. 21: 3091-3102
- https://doi.org/10.5194/acp-21-3091-2021, 2021.
- 1165 Land Tirol: Verkehrsinformation. Last accessed: 01.10.2020,
- https://apps.tirol.gv.at/verkehrsinformation/web/html/vde.html, 2020.
- 1167 Largeron Y, Staquet C: The Atmospheric Boundary Layer during Wintertime Persistent Inversions in the Grenoble
- Valleys. Frontiers in Earth Science 4 https://doi.org/10.3389/feart.2016.00070, 2016.
- 1169 Lee K, Hong JW, Kim J, Jo S, Hong J: Traces of urban forest in temperature and CO2 signals in monsoon East
- 1170 Asia. Atmos. Chem. Phys. 21: 17833-17853 https://doi.org/10.5194/acp-21-17833-2021, 2021.
- 1171 Lehner M, Rotach MW: Current Challenges in Understanding and Predicting Transport and Exchange in the
- Atmosphere over Mountainous Terrain. Atmosphere 9: 276 https://doi.org/10.3390/atmos9070276, 2018.
- 1173 Lehner M, Rotach MW, Obleitner F: A Method to Identify Synoptically Undisturbed, Clear-Sky Conditions for
- 1174 Valley-Wind Analysis. Bound.-Layer Meteor. 173: 435-450 https://doi.org/10.1007/s10546-019-00471-2, 2019.
- 1175 Lehner M, Rotach MW, Sfyri E, Obleitner F: Spatial and temporal variations in near-surface energy fluxes in an
- 1176 Alpine valley under synoptically undisturbed and clear-sky conditions. Q. J. R. Meteorol. Soc. 147: 2173-2196
- 1177 <u>https://doi.org/10.1002/qj.4016</u>, 2021.
- 1178 Leukauf D, Gohm A, Rotach MW: Toward Generalizing the Impact of Surface Heating, Stratification, and Terrain
- 1179 Geometry on the Daytime Heat Export from an Idealized Valley. Journal of Applied Meteorology and Climatology
- 1180 56: 2711-2727 https://doi.org/10.1175/jamc-d-16-0378.1, 2017.
- 1181 Li Y-L et al.: Patterns in CO2 gas exchange capacity of grassland ecosystems in the Alps. Agric. For. Meteorol.
- 1182 148: 51-68 https://doi.org/10.1016/j.agrformet.2007.09.002, 2008.
- Liu H, Feng J, Järvi L, Vesala T: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an
- urban area in Beijing. Atmospheric Chemistry and Physics 12: 7881-7892 https://doi.org/10.5194/acp-12-7881-
- 1185 <u>2012</u>, 2012.
- 1186 MacDonald MK, Pomeroy JW, Essery RLH: Water and energy fluxes over northern prairies as affected by chinook
- 1187 winds and winter precipitation. Agric. For. Meteorol. 248: 372-385
- 1188 <u>https://doi.org/10.1016/j.agrformet.2017.10.025</u>, 2018.
- 1189 Matzinger N, Andretta M, Gorsel EV, Vogt R, Ohmura A, Rotach MW: Surface radiation budget in an Alpine
- valley. Q. J. R. Meteorol. Soc. 129: 877-895 https://doi.org/10.1256/qj.02.44, 2003.
- 1191 Mayr GJ et al.: Gap flow measurements during the Mesoscale Alpine Programme. Meteorology and Atmospheric
- 1192 Physics 86: 99-119 https://doi.org/10.1007/s00703-003-0022-2, 2004.
- 1193 Mayr GJ et al.: The Community Foehn Classification Experiment. Bull. Amer. Meteorol. Soc. 99: 2229-2235
- 1194 <u>https://doi.org/10.1175/bams-d-17-0200.1</u>, 2018.
- 1195 McCaughey JH: Energy balance storage terms in a mature mixed forest at Petawawa, Ontario A case study.
- 1196 Bound.-Layer Meteor. 31: 89-101 https://doi.org/10.1007/BF00120036, 1985.

- 1197 Miao S, Chen F, LeMone MA, Tewari M, Li Q, Wang Y: An Observational and Modeling Study of Characteristics
- 1198 of Urban Heat Island and Boundary Layer Structures in Beijing. Journal of Applied Meteorology and Climatology
- 48: 484-501 https://doi.org/doi:10.1175/2008JAMC1909.1, 2009.
- 1200 Miao S, Dou J, Chen F, Li J, Li A: Analysis of observations on the urban surface energy balance in Beijing. Science
- 1201 China Earth Sciences 55: 1881-1890 https://doi.org/10.1007/s11430-012-4411-6, 2012.
- 1202 Moncrieff JB, Clement R, Finnigan JJ, Meyers T: Averaging, detrending and filtering of eddy covariance time
- 1203 series. In: X Lee, WJ Massman and BE Law (Editors), Handbook of Micrometeorology: a guide for surface flux
- measurements, 2004.
- 1205 Moriwaki R, Kanda M: Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a
- 1206 suburban area. J. Appl. Meteorol. 43: 1700-1710 https://doi.org/10.1175/JAM2153.1, 2004.
- 1207 Muschinski T, Gohm A, Haid M, Umek L, Ward HC: Spatial heterogeneity of the Inn Valley Cold Air Pool during
- 1208 south foehn: Observations from an array of temperature. Meteorol. Z. 30: 153-168
- 1209 https://doi.org/10.1127/metz/2020/1043, 2021.
- 1210 Nadeau DF, Pardyjak ER, Higgins CW, Huwald H, Parlange MB: Flow during the evening transition over steep
- 1211 Alpine slopes. Q. J. R. Meteorol. Soc. 139: 607-624 https://doi.org/10.1002/qj.1985, 2013.
- 1212 Narita K, Sekine T, Tokuoka T: Thermal properties of urban surface materials study on heat balance at asphalt
- 1213 pavement. Geog. Rev. Japan 57A: 639-651, 1984.
- 1214 Nemitz E, Hargreaves KJ, McDonald AG, Dorsey JR, Fowler D: Meteorological measurements of the urban heat
- 1215 budget and CO2 emissions on a city scale. Environ. Sci. Technol. 36: 3139-3146
- 1216 <u>https://doi.org/10.1021/es010277e</u>, 2002.
- 1217 Newton T, Oke TR, Grimmond CSB, Roth M: The suburban energy balance in Miami, Florida. Geografiska
- 1218 Annaler: Series A, Physical Geography 89: 331-347 https://doi.org/10.1111/j.1468-0459.2007.00329.x, 2007.
- 1219 Nordbo A, Järvi L, Haapanala S, Wood CR, Vesala T: Fraction of natural area as main predictor of net CO2
- emissions from cities. Geophysical Research Letters 39: L20802 https://doi.org/10.1029/2012GL053087, 2012.
- 1221 Novak MD: The moisture and thermal regimes of a bare soil in the Lower Fraser Valley during spring. PhD thesis
- 1222 Thesis, University of British Columbia, 175 pp, 1981.
- 1223 Offerle B, Grimmond CSB, Fortuniak K: Heat storage and anthropogenic heat flux in relation to the energy balance
- 1224 of a central European city centre. International Journal of Climatology 25: 1405-1419
- 1225 <u>https://doi.org/10.1002/joc.1198</u>, 2005a.
- 1226 Offerle B, Grimmond CSB, Fortuniak K, Pawlak W: Intraurban differences of surface energy fluxes in a central
- 1227 European city. Journal of Applied Meteorology and Climatology 45: 125-136 https://doi.org/10.1175/JAM2319.1,
- 1228 2006.
- 1229 Offerle B, Jonsson P, Eliasson I, Grimmond CSB: Urban Modification of the Surface Energy Balance in the West
- 1230 African Sahel: Ouagadougou, Burkina Faso. Journal of Climate 18: 3983-3995 https://doi.org/10.1175/jcli3520.1,
- 1231 2005b.
- 1232 Oke TR: Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations.
- 1233 Journal of Climatology 1: 237-254 https://doi.org/10.1002/joc.3370010304, 1981.
- 1234 Oke TR, Mills G, Christen A, Voogt JA: Urban Climates. Cambridge University Press, Cambridge, 2017.
- 1235 Oke TR, Spronken-Smith RA, Jáuregui E, Grimmond CSB: The energy balance of central Mexico City during the
- 1236 dry season. Atmospheric Environment 33: 3919-3930 https://doi.org/10.1016/S1352-2310(99)00134-X, 1999.

- 1237 Papaioannou G, Papanikolaou N, Retalis D: Relationships of photosynthetically active radiation and shortwave
- irradiance. Theoretical and Applied Climatology 48: 23-27 https://doi.org/10.1007/bf00864910, 1993.
- 1239 Pataki DE, Tyler BJ, Peterson RE, Nair AP, Steenburgh WJ, Pardyjak ER: Can carbon dioxide be used as a tracer
- 1240 of urban atmospheric transport? Journal of Geophysical Research: Atmospheres 110
- 1241 <u>https://doi.org/10.1029/2004JD005723</u>, 2005.
- 1242 Pawlak W, Fortuniak K, Siedlecki M: Carbon dioxide flux in the centre of Łódź, Poland—analysis of a 2-year
- 1243 eddy covariance measurement data set. International Journal of Climatology 31: 232-243
- 1244 <u>https://doi.org/10.1002/joc.2247</u>, 2010.
- 1245 Peixoto JP, Oort AH: Physics of Climate. American Institute of Physics, 520 pp, 1992.
- 1246 Pérez-Lombard L, Ortiz J, Pout C: A review on buildings energy consumption information. Energy and Buildings
- 40: 394-398 https://doi.org/10.1016/j.enbuild.2007.03.007, 2008.
- 1248 Perpiñán O: solaR: Solar Radiation and Photovoltaic Systems with R. Journal of Statistical Software 50: 1-32,
- 1249 2012.
- 1250 Pigeon G, Legain D, Durand P, Masson V: Anthropogenic heat release in an old European agglomeration
- 1251 (Toulouse, France). International Journal of Climatology 27: 1969-1981 https://doi.org/10.1002/joc.1530, 2007.
- 1252 Playcan D, Mayr GJ, Zeileis A: Automatic and Probabilistic Foehn Diagnosis with a Statistical Mixture Model.
- Journal of Applied Meteorology and Climatology 53: 652-659 https://doi.org/10.1175/jamc-d-13-0267.1, 2014.
- 1254 Ramamurthy P, Pardyjak ER: Toward understanding the behavior of carbon dioxide and surface energy fluxes in
- 1255 the urbanized semi-arid Salt Lake Valley, Utah, USA. Atmospheric Environment 45: 73-84
- 1256 <u>https://doi.org/10.1016/j.atmosenv.2010.09.049</u>, 2011.
- 1257 Reid KH, Steyn DG: Diurnal variations of boundary-layer carbon dioxide in a coastal city Observations and
- 1258 comparison with model results. Atmospheric Environment 31: 3101-3114 https://doi.org/10.1016/S1352-
- 1259 <u>2310(97)00050-2</u>, 1997.
- 1260 Rotach MW et al.: A collaborative effort to better understand, measure and model atmospheric exchange processes
- over mountains. Bull Am Meteorol Soc, submitted.
- 1262 Rotach MW, Stiperski I, Fuhrer O, Goger B, Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J: Investigating
- 1263 Exchange Processes over Complex Topography: the Innsbruck-Box (i-Box). Bull. Amer. Meteorol. Soc. 98: 787-
- 1264 805 https://doi.org/10.1175/BAMS-D-15-00246.1, 2017.
- 1265 Rotach MW et al.: BUBBLE an Urban Boundary Layer Meteorology Project. Theoretical and Applied
- 1266 Climatology 81: 231-261 https://doi.org/10.1007/s00704-004-0117-9, 2005.
- 1267 Roth M, Jansson C, Velasco E: Multi-year energy balance and carbon dioxide fluxes over a residential
- 1268 neighbourhood in a tropical city. International Journal of Climatology 37: 2679-2698
- 1269 <u>https://doi.org/10.1002/joc.4873</u>, 2017.
- 1270 Sabatier T, Paci A, Canut G, Largeron Y, Dabas A, Donier J-M, Douffet T: Wintertime Local Wind Dynamics
- 1271 from Scanning Doppler Lidar and Air Quality in the Arve River Valley. Atmosphere 9: 118
- 1272 <u>https://doi.org/10.3390/atmos9040118</u>, 2018.
- 1273 Sailor DJ, Georgescu M, Milne JM, Hart MA: Development of a national anthropogenic heating database with an
- 1274 extrapolation for international cities. Atmospheric Environment 118: 7-18
- 1275 <u>https://doi.org/10.1016/j.atmosenv.2015.07.016</u>, 2015.
- 1276 Sailor DJ, Lu L: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for
- 1277 urban areas. Atmospheric Environment 38: 2737-2748 https://doi.org/10.1016/j.atmosenv.2004.01.034, 2004.

- 1278 Sailor DJ, Vasireddy C: Correcting aggregate energy consumption data to account for variability in local weather.
- 1279 Environmental Modelling & Software 21: 733-738 https://doi.org/10.1016/j.envsoft.2005.08.001, 2006.
- 1280 Schmid F, Schmidli J, Hervo M, Haefele A: Diurnal Valley Winds in a Deep Alpine Valley: Observations.
- 1281 Atmosphere 11: 54 https://doi.org/10.3390/atmos11010054, 2020.
- 1282 Schmutz M, Vogt R, Feigenwinter C, Parlow E: Ten years of eddy covariance measurements in Basel, Switzerland:
- 1283 Seasonal and interannual variabilities of urban CO2 mole fraction and flux. Journal of Geophysical Research:
- 1284 Atmospheres 121: 8649-8667 https://doi.org/10.1002/2016JD025063, 2016.
- 1285 Schotanus P, Nieuwstadt FTM, Bruin HAR: Temperature measurement with a sonic anemometer and its
- 1286 application to heat and moisture fluxes. Bound.-Layer Meteor. 26: 81-93 https://doi.org/10.1007/bf00164332,
- 1287 1983
- 1288 Seibert P: Fallstudien und statistische Untersuchungen zum Südföhn im Raum Tirol, University of Innsbruck, 368
- 1289 pp, 1985.
- 1290 Seibert P, Feldmann H, Neininger B, Bäumle M, Trickl T: South foehn and ozone in the Eastern Alps case study
- 1291 and climatological aspects. Atmospheric Environment 34: 1379-1394 https://doi.org/10.1016/S1352-
- 1292 <u>2310(99)00439-2</u>, 2000.
- 1293 Souch C, Grimmond CSB, Wolfe CP: Evapotranspiration rates from wetlands with different disturbance histories:
- 1294 Indiana Dunes National Lakeshore. Wetlands 18: 216-229 https://doi.org/10.1007/BF03161657, 1998.
- 1295 Spronken-Smith RA: Comparison of summer- and winter-time suburban energy fluxes in Christchurch, New
- Zealand. International Journal of Climatology 22: 979-992 https://doi.org/10.1002/joc.767, 2002.
- 1297 Stagakis S, Chrysoulakis N, Spyridakis N, Feigenwinter C, Vogt R: Eddy Covariance measurements and source
- 1298 partitioning of CO2 emissions in an urban environment: Application for Heraklion, Greece. Atmospheric
- Environment 201: 278-292 https://doi.org/10.1016/j.atmosenv.2019.01.009, 2019.
- 1300 Statistik Austria: Atlas der Erwerbspendlerinnen und -pendler. Last accessed: 20.03.2019,
- 1301 https://www.statistik.at/atlas/pendler/, 2016.
- 1302 Statistik Austria: Energy statistics: Domestic Energy Consumption Overall consumption of fuels 2015/2016,
- 1303 2017a.
- 1304 Statistik Austria: Energy statistics: Domestic energy consumption (Microcensus 2015/2016) Driven kilometres
- and fuel consumption of private cars, 2017b.
- 1306 Statistik Austria: Statistiken. Last accessed: 27.02.2019, http://www.statistik-
- 1307 <u>austria.at/web_de/statistiken/index.html</u>, 2018.
- 1308 Stewart ID, Oke TR: Local Climate Zones for Urban Temperature Studies. Bull. Amer. Meteorol. Soc. 93: 1879-
- 1309 1900 https://doi.org/doi:10.1175/BAMS-D-11-00019.1, 2012.
- 1310 Stewart JQ, Whiteman CD, Steenburgh WJ, Bian X: A Climatological study of thermally driven wind systems of
- 1311 the U.S. Intermountain West. Bull. Amer. Meteorol. Soc. 83: 699-708 https://doi.org/10.1175/1520-
- 1312 <u>0477(2002)083<0699:acsotd>2.3.co;2</u>, 2002.
- 1313 Sugawara H, Narita K-i: Mitigation of Urban Thermal Environment by River. Journal of Japan Society of
- 1314 Hydrology and Water Resources 25: 351-361 https://doi.org/10.3178/jjshwr.25.351, 2012.
- 1315 Taesler R: Studies of the development and thermal structure of the urban boundary layer in Uppsala,
- 1316 Meteorological Institute of the University of Uppsala, Uppsala, 1980.
- 1317 Umek L, Gohm A, Haid M, Ward HC, Rotach MW: Large eddy simulation of foehn-cold pool interactions in the
- 1318 Inn Valley during PIANO IOP2. Quart J Roy Meteorol Soc 147: 944-982 https://doi.org/10.1002/qi.3954, 2021.

- 1319 Urbanski S et al.: Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest.
- Journal of Geophysical Research: Biogeosciences 112 https://doi.org/10.1029/2006JG000293, 2007.
- 1321 Velasco E et al.: Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds
- 1322 in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns. Atmos. Chem. Phys. 7: 329-353
- 1323 <u>https://doi.org/10.5194/acp-7-329-2007</u>, 2007.
- 1324 Velasco E, Perrusquia R, Jiménez E, Hernández F, Camacho P, Rodríguez S, Retama A, Molina L: Sources and
- 1325 sinks of carbon dioxide in a neighborhood of Mexico City. Atmospheric environment 97: 226-238
- 1326 https://doi.org/10.1016/j.atmosenv.2014.08.018, 2014.
- 1327 Vergeiner I, Dreiseitl E: Valley winds and slope winds Observations and elementary thoughts. Meteorology
- 1328 and Atmospheric Physics 36: 264-286 https://doi.org/10.1007/BF01045154, 1987.
- 1329 Vesala T et al.: Surface-atmosphere interactions over complex urban terrain in Helsinki, Finland. Tellus B 60:
- 1330 188-199 https://doi.org/10.1111/j.1600-0889.2007.00312.x, 2008.
- 1331 Wagner JS, Gohm A, Rotach MW: The impact of valley geometry on daytime thermally driven flows and vertical
- transport processes. Q. J. R. Meteorol. Soc. 141: 1780-1794 https://doi.org/10.1002/qj.2481, 2015.
- 1333 Ward HC, Evans JG, Grimmond CSB: Multi-season eddy covariance observations of energy, water and carbon
- 1334 fluxes over a suburban area in Swindon, UK. Atmospheric Chemistry and Physics 13: 4645-4666
- 1335 https://doi.org/10.5194/acp-13-4645-2013, 2013.
- 1336 Ward HC, Gohm A, Umek L, Haid M, Muschinski T, Graus M, Karl T, Rotach MW: PIANO (Penetration and
- 1337 Interruption of Alpine Foehn) flux station data set. Zenodo https://doi.org/10.5281/zenodo.5795431, 2021.
- 1338 Ward HC, Kotthaus S, Grimmond CSB, Bjorkegren A, Wilkinson M, Morrison WTJ, Evans JG, Morison JIL,
- 1339 Iamarino M: Effects of urban density on carbon dioxide exchanges: Observations of dense urban, suburban and
- 1340 woodland areas of southern England. Environmental Pollution 198: 186-200
- 1341 https://doi.org/10.1016/j.envpol.2014.12.031, 2015.
- 1342 Ward HC, Kotthaus S, Järvi L, Grimmond CSB: Surface Urban Energy and Water Balance Scheme (SUEWS):
- Development and evaluation at two UK sites. Urban Climate 18: 1-32 https://doi.org/10.1016/j.uclim.2016.05.001,
- 1344 2016.
- 1345 Ward HC, Rotach MW, Graus M, Karl T, Gohm A, Umek L, Haid M: Turbulence characteristics at an urban site
- in highly complex terrain. in prep.
- 1347 Weissert LF, Salmond JA, Turnbull JC, Schwendenmann L: Temporal variability in the sources and fluxes of CO2
- 1348 in a residential area in an evergreen subtropical city. Atmospheric Environment 143: 164-176
- 1349 <u>https://doi.org/10.1016/j.atmosenv.2016.08.044</u>, 2016.
- Whiteman CD: Mountain Meteorology, Fundamentals and Applications. Oxford University Press, New York-
- 1351 Oxford, 2000.
- 1352 Whiteman CD, Allwine KJ, Fritschen LJ, Orgill MM, Simpson JR: Deep Valley Radiation and Surface Energy
- 1353 Budget Microclimates. Part I: Radiation. J. Appl. Meteorol. 28: 414-426 https://doi.org/doi.10.1175/1520-
- 1354 <u>0450(1989)028<0414:DVRASE>2.0.CO;2</u>, 1989.
- 1355 Wohlfahrt G, Bahn M, Haslwanter A, Newesely C, Cernusca A: Estimation of daytime ecosystem respiration to
- 1356 determine gross primary production of a mountain meadow. Agric. For. Meteorol. 130: 13-25
- 1357 <u>https://doi.org/10.1016/j.agrformet.2005.02.001</u>, 2005.
- 1358 Wohlfahrt G, Hammerle A, Haslwanter A, Bahn M, Tappeiner U, Cernusca A: Seasonal and inter-annual
- 1359 variability of the net ecosystem CO2 exchange of a temperate mountain grassland: Effects of weather and
- management. Journal of Geophysical Research: Atmospheres 113 https://doi.org/10.1029/2007jd009286, 2008.



- 1361 Xie J, Jia X, He G, Zhou C, Yu H, Wu Y, Bourque CPA, Liu H, Zha T: Environmental control over seasonal
- 1362 variation in carbon fluxes of an urban temperate forest ecosystem. Landscape and Urban Planning 142: 63-70
- 1363 https://doi.org/10.1016/j.landurbplan.2015.04.011, 2015.
- 1364 Yap DH: Sensible heat fluxes measured in and near Vancouver, B.C. PhD Thesis, University of British Columbia,
- 1365 199 pp, 1973.
- 1366 Yoshida A, Tominaga K, Watatani S: Field measurements on energy balance of an urban canyon in the summer
- season. Energy and Buildings 15: 417-423 https://doi.org/10.1016/0378-7788(90)90016-C, 1990.
- 1368 Yoshida A, Tominaga K, Watatani S: Field investigation on heat transfer in an urban canyon. Heat Transfer -
- 1369 Japanese Research 20: 230-244, 1991.
- 1370 ZAMG: Klimamonitoring. Last accessed: 23.11.2021, https://www.zamg.ac.at/cms/de/klima/klima-
- 1371 aktuell/klimamonitoring/?station=11803¶m=t&period=period-ym-2017-05&ref=3, 2021.
- 1372 Zängl G: Deep and shallow south foehn in the region of Innsbruck: Typical features and semi-idelized numerical
- 1373 simulations. Meteorology and Atmospheric Physics 83: 237-261 https://doi.org/10.1007/s00703-002-0565-7,
- 1374 2003.
- 1375 Zardi D, Whiteman CD: Diurnal mountain wind systems. In: FK Chow, SFJ De Wekker and BJ Snyder (Editors),
- 1376 Mountain weather research and forecasting. Springer Atmospheric Sciences. Springer, Dordrecht, pp. 35-119,
- 1377 2013.

Surface type	a_1	$a_2 [h^{-1}]$	a ₃ [W m ⁻²]	Source
Buildings	0.477	0.337	-33.9	Average of Yap (1973), Taesler (1980) and Yoshida et al.
				(1990); Yoshida et al. (1991)
Paved areas	0.665	0.243	-42.8	Average of Narita et al. (1984), Doll et al. (1985) and
				Asaeda and Ca (1993) for asphalt and concrete
Road	0.500	0.275	-31.5	Average of Narita et al. (1984) and Asaeda and Ca (1993)
				for asphalt
Water	0.500	0.210	-39.1	Souch et al. (1998)
Short vegetation	0.320	0.540	-27.4	Short grass values from Doll et al. (1985)
Trees	0.110	0.110	-12.3	Mixed forest values from McCaughey (1985)
Other	0.355	0.333	-35.3	Average of Fuchs and Hadas (1972), Novak (1981) and
				Asaeda and Ca (1993) for bare soil

1379 Table C 1: Coefficients for each surface type used in the Objective Hysteresis Model.

1380

Figure 1: (a) Location of the Innsbruck Atmospheric Observatory (IAO) and airport (FLUG) sites in the Inn Valley and Steinach (S) in the Wipp Valley (aerial imagery from © Google Earth). (b) Photograph taken from the position marked with an open circle in (a) looking eastwards along the Inn Valley over Innsbruck airport and the city of Innsbruck. The location of Innsbruck within Austria is shown (bottom right).

1387 1388

1389

1390 1391

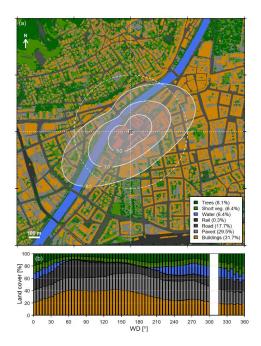


Figure 2: (a) Composite source area at IAO for the study period (01 May 2017-30 Apr 2021) superimposed on land cover (derived from various spatial datasets from Land Tirol, data.tirol.gv.at). Contours indicate the region comprising 50, 70 and 80% of the source area and the circle indicates a distance of 500 m from the flux tower. (b) Average land cover composition by wind direction (no data are available for wind directions of $309 \pm 10^{\circ}$, Section 2.3). The aggregated source area composition for the study period is given in the legend.

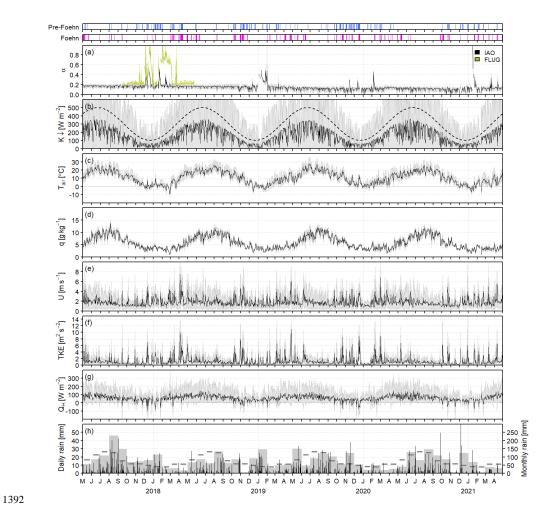


Figure 3: Time series of daily mean values (shading indicates $10-90^{th}$ percentiles) of (a) albedo (b) incoming shortwave radiation (c) air temperature (d) specific humidity, q, (e) wind speed, (f) turbulent kinetic energy and (g) sensible heat flux; and (h) daily and monthly rainfall for IAO. In (h) the thick horizontal bars indicate the 1981-2010 normal monthly rainfall (ZAMG, 2021). The albedo for site FLUG is also shown in (a). In (b) the dashed line indicates top-of-atmosphere irradiance. The top panels show the occurrence of foehn and pre-foehn conditions (see Appendix A for details).

1394

1395

1396 1397

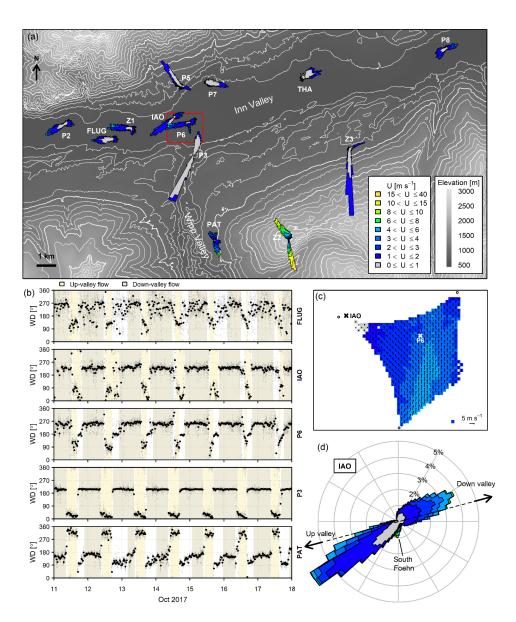


Figure 4: (a) Wind roses for stations in and around Innsbruck during Autumn 2017 (all available 30-min data for September-November 2017) overlaid on a digital elevation map (data source: Amt der Tiroler Landesregierung, Abteilung Geoinformation) with thin/thick contours at 100-m/500-m intervals. (b) Timeseries of wind direction for selected sites for the mostly clear-sky period 11-18 October 2017 with upvalley and down-valley flow shaded. 30-min data are shown in black and 1-min data in grey. (c) Horizontal wind field (approx. 60 m above ground) at 17:50-18:00 CET on 16 October 2017 derived from three Doppler wind lidars (circles) performing coplanar scans (see Haid et al. (2020) for details). Colours/arrows indicate wind speed/wind direction; points outside the coplanar field of view are left white. The area shown in (c) corresponds to the red box in (a) and is about 1.8 km x 1.5 km. (d) Wind rose for IAO during the study period (01 May 2017-30 Apr 2021). The black line indicates the approximate orientation of the Inn Valley axis at IAO with the up- and down-valley directions marked. The colour scale for wind speed in (c) and (d) is the same as in (a).

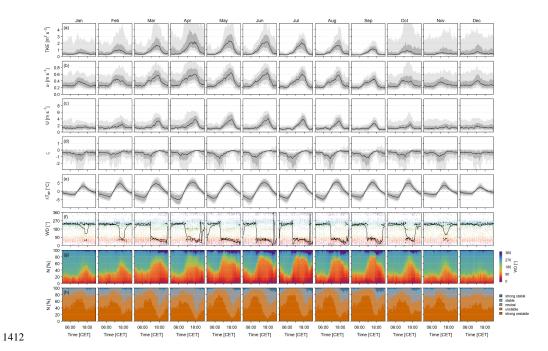


Figure 5: Monthly median diurnal cycles (black lines), interquartile ranges (dark shading) and $10\text{-}90^{\text{th}}$ percentiles (light shading) of (a) turbulent kinetic energy, (b) friction velocity, (c) wind speed, (d) dynamic stability and (e) difference between 30-min and daily mean air temperature, ΔT_{air} . (f) Monthly median diurnal cycles (black lines), modal values (black points) and individual 30-min wind directions (coloured points). Normalised frequency distributions of (g) wind direction and (h) stability separated by month and by time of day. Stability classes are strongly unstable ($\zeta \leq -0.5$), unstable ($-0.5 < \zeta \leq -0.1$), neutral ($-0.1 < \zeta \leq 0.1$), stable ($-0.1 < \zeta \leq 0.5$) and strongly stable (-0.5 < 0.5).

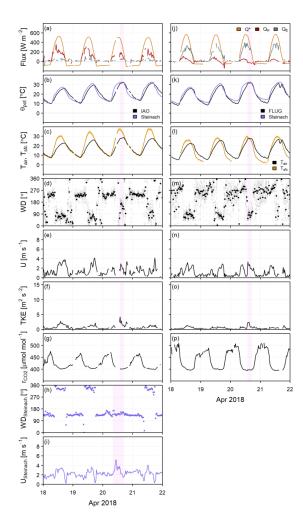


Figure 6: Timeseries of (a, j) net radiation, sensible heat flux and latent heat flux (b, k) potential temperature, θ_{pot} , (c, l) air temperature and surface temperature derived from outgoing longwave radiation assuming an emissivity of 0.95 (shading indicates the uncertainty for emissivities 0.90-1.00), (d, m) wind direction, (e, n) wind speed, (f, o) turbulent kinetic energy and (g, p) CO₂ mixing ratio for the clear-sky period 18-22 April 2018 at (a-g) IAO and (j-p) FLUG. Wind direction (h), wind speed (i) and potential temperature (b, k) at Steinach in the Wipp Valley are also shown. All data are at 30-min resolution; 1-min wind direction is additionally shown at IAO and FLUG (small grey points in (d) and (m)). Shading indicates times with foehn at each site (see Appendix A for details).

1421 1422

1423 1424

1425

1426 1427

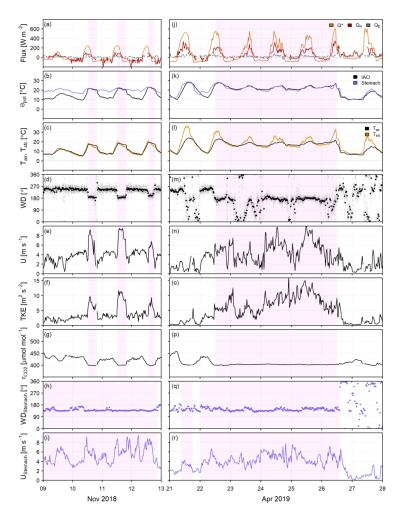


Figure 7: As Figure 6a-i for the periods (a-i) 09-13 November 2018 and (j-r) 21-28 April 2019 affected by foehn. Data are shown for (a-g, j-p) IAO and (h-i, q-r) Steinach.

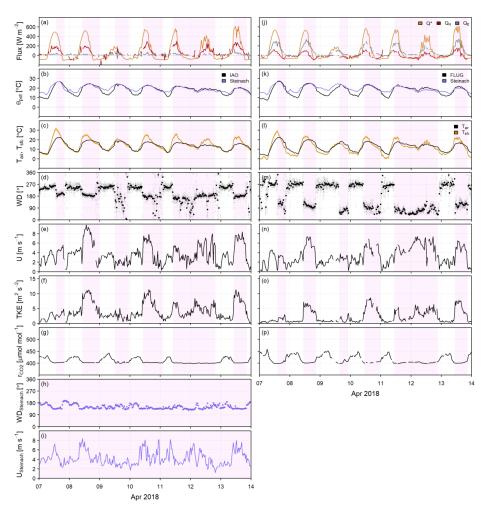


Figure 8: As Figure 6 for the period 07-14 April 2018 at (a-g) IAO, (j-p) FLUG and (h-i) Steinach.

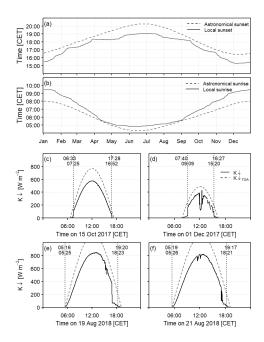


Figure 9: Time of local and astronomical (a) sunset and (b) sunrise at IAO. Observed incoming shortwave radiation (1-min data) for example days illustrating the effect of (c, d) orographic shading and (e, f) orographic shading plus afternoon cloud cover around the surrounding peaks. In (c-f) local sunrise and sunset are marked by dotted vertical lines and the times of local and astronomical sunrise and sunset are shown. The incoming shortwave radiation at the top of the atmosphere $K_{\downarrow TOA}$ is also shown (see text for details).

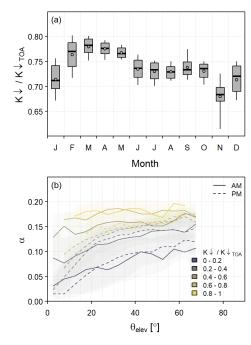


Figure 10: (a) Monthly boxplots of the midday (11:00-15:00 CET) clearness index K_1/K_1 $_{TOA}$ at IAO for clear-sky days. Boxes indicate the interquartile range, whiskers the 10-90th percentiles and the median and mean are shown by horizontal bars and points, respectively. (b) Albedo ($K_1 > 5$ W m⁻², times with snow cover have been removed) at IAO versus elevation angle separated by clearness index and into morning (AM) and afternoon (PM) periods. Lines indicate binned median values and shading the interquartile range.

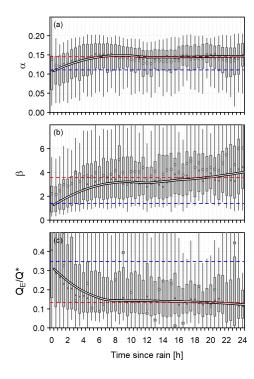


Figure 11: Boxplots of (a) albedo, (b) Bowen ratio and (c) the ratio of the latent heat flux to net radiation binned by time since (> 0 mm) rainfall for daytime (K_{\downarrow} > 5 W m⁻²) data only at IAO. The thick line is a loess curve through the median values; the red dashed line indicates the mean of these values between 12 and 24 hours since rain (i.e. reasonably dry conditions) and the blue dashed line for the first two boxes (i.e. wet conditions less than one hour since rainfall).

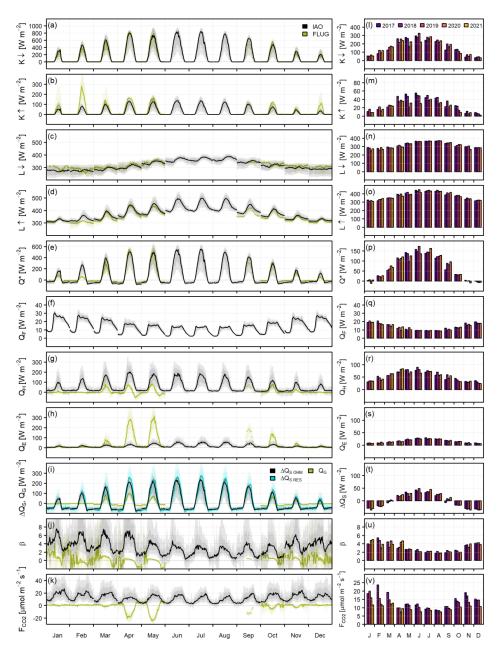


Figure 12: (a-k) Monthly median diurnal cycles (lines), interquartile ranges (dark shading) and $10-90^{th}$ percentiles (light shading) of radiative fluxes, energy balance terms and carbon dioxide fluxes: (a) incoming shortwave radiation, (b) outgoing shortwave radiation, (c) incoming longwave radiation, (d) outgoing longwave radiation, (e) net all-wave radiation, (f) anthropogenic heat flux, (g) sensible heat flux, (h) latent heat flux, (i) storage heat flux, (j) Bowen ratio and (k) carbon dioxide flux. All available data for IAO and FLUG are shown in black and green, respectively. In (i) the net storage heat flux (ΔQ_S) estimated using the Objective Hysteresis Model (OHM) and estimated as the energy balance residual (RES) is shown for IAO and the ground heat flux (ΔQ_S) is shown for FLUG. (l-v) Barplots of daily mean fluxes at IAO separated by month and by year (colours). In (t) the storage heat flux is estimated using OHM. Note the different y-axis limits.

1454 1455

1456

1457 1458

1459

1460

1461 1462

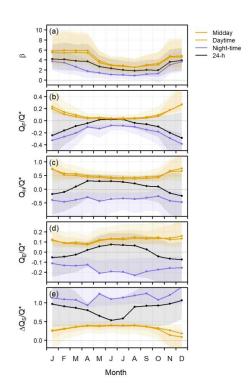


Figure 13: Energy partitioning at IAO for different subsets: midday (11:00-15:00 CET), daytime $(K_{\downarrow} > 5 \text{ W m}^{-2})$, night-time $(K_{\downarrow} \le 5 \text{ W m}^{-2})$ and 24-h. Lines indicate monthly median values and shading the interquartile range for (a) Bowen ratio and for (b) anthropogenic heat flux, (c) sensible heat flux, (d) latent heat flux and (e) net storage heat flux (calculated using OHM) normalised by net radiation.

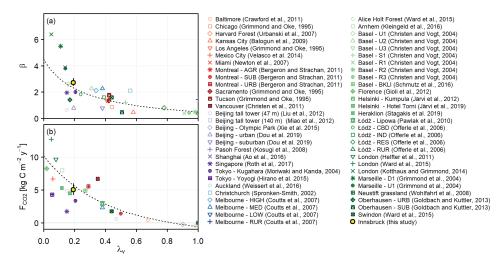


Figure 14: (a) Daytime (or midday if daytime is not given in the corresponding publication) Bowen ratio during summer and (b) annual net carbon flux versus vegetation fraction λ_{ν} for IAO and for various sites in the literature (see legend for references). Error bars for IAO indicate the spread of (a) daytime summertime values for the different years and (b) annual totals over the four twelve-month periods of the

1466 1467

1468

1469 1470

1471

1472

1474 dataset. The dotted lines in (a) are Equation 3 from Christen and Vogt (2004) and in (b) from Nordbo et al. 1475 (2012).

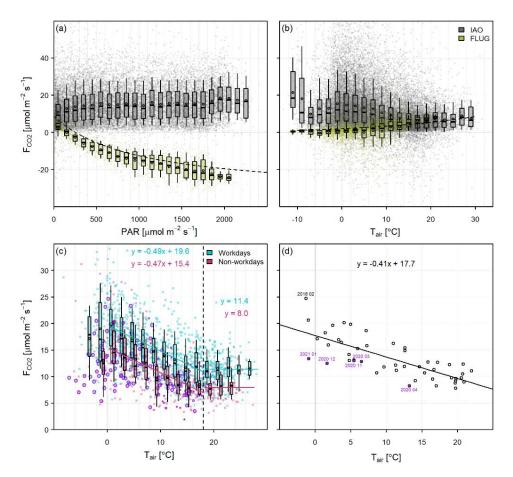


Figure 15: (a) 30-min daytime ($K_{\downarrow} > 5$ W m⁻²) observed CO₂ fluxes versus photosynthetically active radiation for all available data during the growing season (April-September, inclusive, but note that FLUG data are only available for 15 September 2017-22 May 2018); and (b) 30-min night-time ($K_{\downarrow} \le 5$ W m⁻²) observed CO₂ fluxes versus air temperature for the urban (IAO) and grassland (FLUG) sites. The dashed lines show (a) the light-response curve and (b) soil respiration rate for a grassland site in the nearby Stubai Valley (Wohlfahrt et al., 2005; Li et al., 2008). (c) Daily mean CO₂ flux versus daily mean air temperature separated into working and non-working days (daily values have been gap-filled using monthly median diurnal cycles for working and non-working days). Points outlined in purple occurred during Coronavirus restrictions. The vertical dashed line marks a base temperature of 18 °C above which F_{CO2} does not decrease with temperature. (d) Average monthly observed CO₂ fluxes versus average monthly air temperature. Purple points indicate months with the strictest Coronavirus restrictions. In (a-c) boxes indicate the interquartile range, whiskers the 10^{th} - 90^{th} percentile, horizontal bars the median and points the mean. In (c-d) solid lines are linear regressions with the equations given.

1491

1492

1493

1494

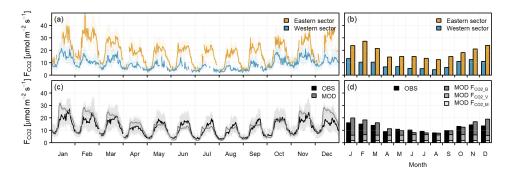


Figure 16: (a, c) Monthly median diurnal cycles (shading indicates interquartile range) and (b, d) the corresponding daily mean fluxes by month for (a-b) observed carbon dioxide fluxes separated into east (60-120°) and west (210-270°) wind sectors and (c-d) observed and modelled carbon dioxide fluxes. In (d) the modelled emissions are separated into contributions from building heating (F_{CO2_B}) , traffic (F_{CO2_V}) and human metabolism (F_{CO2_M}) .

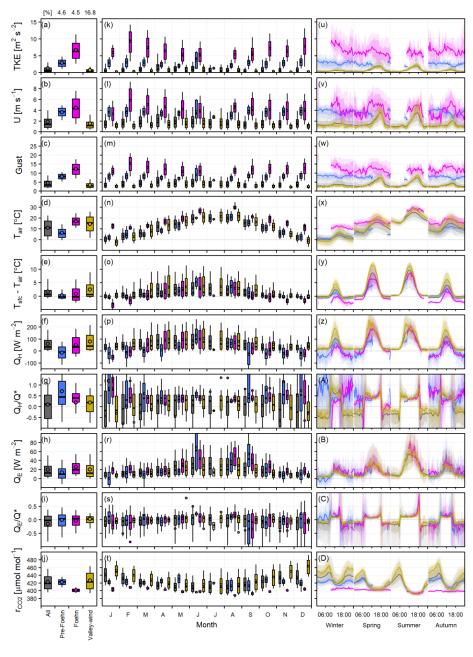


Figure 17: Impact of different flow regimes (colours) on (a,k,u) turbulent kinetic energy, (b,l,v) wind speed, (c,m,w) gust speed, (d,n,x) air temperature, (e,o,y) difference between surface and air temperature, (f,p,z) sensible heat flux, (g,q,A) sensible heat flux ratio, (h,r,B) latent heat flux, (f,x,C) latent heat flux ratio and (f,x,D) CO2 mixing ratio at IAO. Boxplots are shown for all data together (a-j) and separated by month (k-t); boxes indicate the interquartile range, whiskers the 10-90th percentiles and the median and mean are shown by horizontal bars and points, respectively. Median diurnal cycles (lines), interquartile ranges (dark shading) and 10-90th percentiles (light shading) are separated by season (u-D). The category 'All' refers to the whole dataset (i.e. includes the other categories) and the proportion of the study period classified as each of the other categories is given above (a). Data are plotted if more than 5 data points are present.

1503

1504

1505

1506